Staff directory

Publications

2017

  • Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects

    Cummings A.W., Garcia J.H., Fabian J., Roche S. Physical Review Letters; 119 (20, 206601) 2017. 10.1103/PhysRevLett.119.206601.

    We report on fundamental aspects of spin dynamics in heterostructures of graphene and transition metal dichalcogenides (TMDCs). By using realistic models derived from first principles we compute the spin lifetime anisotropy, defined as the ratio of lifetimes for spins pointing out of the graphene plane to those pointing in the plane. We find that the anisotropy can reach values of tens to hundreds, which is unprecedented for typical 2D systems with spin-orbit coupling and indicates a qualitatively new regime of spin relaxation. This behavior is mediated by spin-valley locking, which is strongly imprinted onto graphene by TMDCs. Our results indicate that this giant spin lifetime anisotropy can serve as an experimental signature of materials with strong spin-valley locking, including graphene-TMDC heterostructures and TMDCs themselves. Additionally, materials with giant spin lifetime anisotropy can provide an exciting platform for manipulating the valley and spin degrees of freedom, and for designing novel spintronic devices. © 2017 American Physical Society.


  • Spin hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures

    Garcia J.H., Cummings A.W., Roche S. Nano Letters; 17 (8): 5078 - 5083. 2017. 10.1021/acs.nanolett.7b02364. IF: 12.712

    We report on a theoretical study of the spin Hall Effect (SHE) and weak antilocalization (WAL) in graphene/transition metal dichalcogenide (TMDC) heterostructures, computed through efficient real-space quantum transport methods, and using realistic tight-binding models parametrized from ab initio calculations. The graphene/WS2 system is found to maximize spin proximity effects compared to graphene on MoS2, WSe2, or MoSe2 with a crucial role played by disorder, given the disappearance of SHE signals in the presence of strong intervalley scattering. Notably, we found that stronger WAL effects are concomitant with weaker charge-to-spin conversion efficiency. For further experimental studies of graphene/TMDC heterostructures, our findings provide guidelines for reaching the upper limit of spin current formation and for fully harvesting the potential of two-dimensional materials for spintronic applications. © 2017 American Chemical Society.


  • Valley-polarized quantum transport generated by gauge fields in graphene

    Settnes M., Garcia J.H., Roche S. 2D Materials; 4 (3, 031006) 2017. 10.1088/2053-1583/aa7cbd. IF: 6.937

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a e2 /h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.


2016

  • Charge, spin and valley Hall effects in disordered grapheme

    Cresti A., Nikolíc B.K., Garćia J.H., Roche S. Rivista del Nuovo Cimento; 39 (12): 587 - 667. 2016. 10.1393/ncr/i2016-10130-6. IF: 1.250

    The discovery of the integer quantum Hall effect in the early eighties of the last century, with highly precise quantization values for the Hall conductance in multiples of e2/h, has been the first fascinating manifestation of the topological state of matter driven by magnetic field and disorder, and related to the formation of non-dissipative current flow. Throughout the 2000's, several new phenomena such as the spin Hall effect and the quantum spin Hall effect were confirmed experimentally for systems with strong spin-orbit coupling effects and in the absence of external magnetic field. More recently, the Zeeman spin Hall effect and the formation of valley Hall topological currents have been introduced for graphene-based systems, under time-reversal or inversion symmetry-breaking conditions, respectively. This review presents a comprehensive coverage of all these Hall effects in disordered graphene from the perspective of numerical simulations of quantum transport in two-dimensional bulk systems (by means of the Kubo formalism) and multiterminal nanostructures (by means of the Landauer-Buttiker scattering and non-equilibrium Green's function approaches). In contrast to usual two-dimensional electron gases in semiconductor heterostructures, the presence of defects in graphene generates more complex electronic features such as electron-hole asymmetry, defect-induced resonances in the electron density of states or percolation effect between localized impurity states, which, together with extra degrees of freedom (sublattice pseudospin and valley isospin), bring a higher degree of complexity and enlarge the transport phase diagram.