Staff directory

Fernando Novio Vazquez

Postdoctoral Researcher
Nanostructured Functional Materials



  • Ligand and solvent effects in the formation and self-assembly of a metallosupramolecular cage

    Adarsh N.N., Chakraborty A., Tarrés M., Dey S., Novio F., Chattopadhyay B., Ribas X., Ruiz-Molina D. New Journal of Chemistry; 41 (3): 1179 - 1185. 2017. 10.1039/C6NJ03456J. IF: 3.269

    Two bis-pyridyl-bis-urea ligands namely N,N′-bis-(3-pyridyl)diphenylmethylene-bis-urea (L1) and N,N′-bis-(3-picolyl)diphenylmethylene-bis-urea (L2) have been reacted with a Cu(ii) salt resulting in the formation of a metallosupramolecular cage [{Cu2(μ-L1)4(DMSO)2(H2O)2}·SO4·X] (1) and a one-dimensional coordination polymer [{Cu(1)(μ-L2)2(H2O)2}{Cu(2)(μ-L2)2(H2O)2}·2SO4·9H2O·X]n (2) (where DMSO = dimethylsulfoxide, and X = disordered lattice included solvent molecules), respectively. The single crystal structures of 1 and 2 are discussed in the context of the effect of the ligands, particularly the hydrogen bonding functionality of the ligand, on the supramolecular structural diversities observed in these metal organic compounds. The supramolecular packing of 1 is clearly influenced by the nature of the solvent and ligand used; mixtures of DMSO/MeOH or DMSO/H2O lead to the formation of blue crystals or a hydrogel, respectively. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  • Synthesis and Characterization of PtTe2 Multi-Crystallite Nanoparticles using Organotellurium Nanocomposites

    Fernández-Lodeiro J., Rodríguez-Gónzalez B., Novio F., Fernández-Lodeiro A., Ruiz-Molina D., Capelo J.L., Santos A.A.D., Lodeiro C. Scientific Reports; 7 (1, 9889) 2017. 10.1038/s41598-017-10239-8. IF: 4.259

    Herein, we report the synthesis of new PtTe2 multi-crystallite nanoparticles (NPs) in different sizes through an annealing process using new nanostructured Pt-Te organometallic NPs as a single source precursor. This precursor was obtained in a single reaction step using Ph2Te2 and H2PtCl6 and could be successfully size controlled in the nanoscale range. The resulting organometallic composite precursor could be thermally decomposed in 1,5 pentanediol to yield the new PtTe2 multi-crystallite NPs. The final size of the multi-crystallite spheres was successfully controlled by selecting the nanoprecursor size. The sizes of the PtTe2 crystallites formed using the large spheres were estimated to be in the range of 2.5-6.5 nm. The results provide information relevant to understanding specific mechanistic aspects related to the synthesis of organometallic nanomaterials and nanocrystals based on platinum and tellurium. © 2017 The Author(s).


  • Coordination polymers build from 1,4-bis(imidazol-1yl-methyl)benzene: From Crystalline to Amorphous

    N. N Adarsh, F. Novio, D. Ruiz-Molina Dalton Transactions; 45 (28): 11233 - 11255. 2016. 10.1039/C6DT01157H. IF: 4.177

    The supramolecular chemistry of the bis-imidazole ligand 1,4-bis(imidazol-1-ylmethyl)benzene, popularly known as bix, has been explored by various researchers in order to synthesize functional coordination polymers (CPs). The flexibility of the bix ligand, its unpredictable conformation and its coordination behaviour with transition metal ions have resulted in a huge number of structurally diverse and functionally intriguing CPs. In this perspective review we discuss the progress in CPs of bix between 1997 and today. More precisely, this review emphasizes the developments in functional supramolecular coordination polymers built from the bix ligand, from crystalline materials to amorphous nanomaterials.

  • Nanoscale coordination polymers obtained in ultrasmall liquid droplets on solid surfaces and its comparison to different synthetic volume scales

    Bellido E., González-Monje P., Guardingo M., Novio F., Sánchez A., Montero M., Molnar G., Bousseksou A., Ruiz-Molina D. RSC Advances; 6 (80): 76666 - 76672. 2016. 10.1039/c6ra14368g. IF: 3.289

    Synthesis of coordination polymers at femtolitre scales assisted by an AFM tip has become an area of increasing interest due to the astonishing range of implications that derive from it, from gaining basic knowledge of confined reactions in femtolitre droplets to the fabrication of molecular-based devices. However, this field is still in its infancy, a reason why several new basic studies that allow us control over it are highly required. Herein we report the synthesis of [Co(CH3COO)2(μ-4,4′-bpy)] in femtolitre droplets on surfaces and the results are compared with those obtained for the same reaction at different volume scales. ©2016 The Royal Society of Chemistry.

  • Switchable colloids, thin-films and interphases based on metal complexes with non-innocent ligands: The case of valence tautomerism and their applications

    Vázquez-Mera N.A., Novio F., Roscini C., Bellacanzone C., Guardingo M., Hernando J., Ruiz-Molina D. Journal of Materials Chemistry C; 4 (25): 5879 - 5889. 2016. 10.1039/c6tc00038j. IF: 5.066

    Successful nanostructuration approaches developed in the last few years have allowed the preparation of robust valence tautomeric (VT) switchable (micro-/nano-) structures of a variety of dimensions and morphologies. These results are expected to definitely foster the implementation of these materials on hybrid molecular electronic devices but also endorse new applications in other different fields such as sensing, drug delivery or water remediation, among others. © The Royal Society of Chemistry 2016.

  • Synthesis of Nanoscale Coordination Polymers in Femtoliter Reactors on Surfaces

    Guardingo M., González-Monje P., Novio F., Bellido E., Busqué F., Molnár G., Bousseksou A., Ruiz-Molina D. ACS Nano; 10 (3): 3206 - 3213. 2016. 10.1021/acsnano.5b05071. IF: 13.334

    In the present work, AFM-assisted lithography was used to perform the synthesis of a coordination polymer inside femtoliter droplets deposited on surfaces. For this, solutions of the metal salt and the organic ligand were independently transferred to adjacent tips of the same AFM probe array and were sequentially delivered on the same position of the surface, creating femtoliter-sized reaction vessels where the coordination reaction and particle growth occurred. Alternatively, the two reagents were mixed in the cantilever array by loading an excess of the inks, and transferred to the surface immediately after, before the precipitation of the coordination polymer took place. The in situ synthesis allowed the reproducible obtaining of round-shaped coordination polymer nanostructures with control over their XY positioning on the surface, as characterized by microscopy and spectroscopy techniques. © 2016 American Chemical Society.


  • Covalent Grafting of Coordination Polymers on Surfaces: The Case of Hybrid Valence Tautomeric Interphases

    González-Monje P., Novio F., Ruiz-Molina D. Chemistry - A European Journal; 21 (28): 10094 - 10099. 2015. 10.1002/chem.201500671. IF: 5.731

    We have developed a novel approach for grafting coordination polymers, structured as nanoparticles bearing surface reactive carboxylic groups, to amino-functionalized surfaces through a simple carbodiimide-mediated coupling reaction. As a proof-of-concept to validate our approach, and on the quest for novel hybrid interphases with potential technological applications, we have used valence tautomeric nanoparticles exhibiting spin transition at or around room temperature. SEM and AFM characterization reveal that the nanoparticles were organized chiefly into a single monolayer while X-ray photoelectron spectroscopy (XPS) measurements confirm that the nanoparticles retain a temperature-induced electronic redistribution upon surface anchorage. Our results represent an effective approach towards the challenging manufacture of coordination polymers. CPPs immobilization: A generic approach for immobilizing coordination polymer nanoparticles (CPPs) on gold surfaces is reported. The protocol involves covalent bonding between amino-terminated alkyl chains on the gold surface and carboxylic groups on the CPPs surface. The thickness of the nanoparticle monolayer is comparable to the nanoparticle size. The nanoparticles used exhibit valence tautomerism in bulk and keep this property after surface attachment, as corroborated by X-ray photoelectron spectroscopy (XPS) measurements. The results represent an effective approach towards the manufacture of coordination polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Design and Synthesis of a Noninnocent Multitopic Catechol and Pyridine Mixed Ligand: Nanoscale Polymers and Valence Tautomerism

    Guardingo M., Busqué F., Novio F., Ruiz-Molina D. Inorganic Chemistry; 54 (14): 6776 - 6781. 2015. 10.1021/acs.inorgchem.5b00598. IF: 4.762

    The design and synthesis of a new redox-active ligand combining catechol and pyridine units have allowed the achievement of cobalt-based nanoscale coordination polymer particles in a single-step exhibiting a switchable valence tautomeric behavior and thermal hysteresis. The combination of polymerizing capabilities with redox-active responses in a unique ligand leads to the formation of nanoparticles exhibiting a gradual valence tautomeric interconversion in the 35-370 K temperature range. Using one single ligand to obtain these nanoparticles facilitates possible nanostructure formation methodologies. (Chemical Equation Presented). © 2015 American Chemical Society.

  • Dual T1/T2 MRI contrast agent based on hybrid SPION@coordination polymer nanoparticles

    Borges M., Yu S., Laromaine A., Roig A., Suárez-García S., Lorenzo J., Ruiz-Molina D., Novio F. RSC Advances; 5 (105): 86779 - 86783. 2015. 10.1039/c5ra17661a. IF: 3.840

    We report a novel hybrid T1/T2 dual MRI contrast agent by the encapsulation of SPIONs (T2 contrast agent) into an iron-based coordination polymer with T1-weighted signal. This new hybrid material presents improved relaxometry and low cytotoxicity, which make it suitable for its use as contrast agent for MRI. © 2015 The Royal Society of Chemistry.