Staff directory

Zhi Li

Fellowship Doctoral Student
China Scholarship Council
Universitat Autònoma de Barcelona (UAB)
Magnetic Nanostructures



  • Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters

    Li Z., Lopez-Ortega A., Aranda-Ramos A., Tajada J.L., Sort J., Nogues C., Vavassori P., Nogues J., Sepulveda B. Small; 2018. 10.1002/smll.201800868.

    A crucial challenge in nanotherapies is achieving accurate and real-time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic-induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60-fold smaller than state-of-the-art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real-time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state-of-the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


  • Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering

    Zhang C., de la Mata M., Li Z., Belarre F.J., Arbiol J., Khor K.A., Poletti D., Zhu B., Yan Q., Xiong Q. Nano Energy; 30: 630 - 638. 2016. 10.1016/j.nanoen.2016.10.056. IF: 11.553

    Bismuth telluride based thermoelectric materials show great promise in electricity generation from waste heat and solid-state refrigeration, but improving their conversion efficiency with economical approaches for widespread use remains a challenge. An economical facile bottom-up approach has been developed to obtain nanostructured powders, which are used to build bulk thermoelectric materials. Using excess tellurium as sacrificial additive to enable liquid-phase sintering in the spark plasma sintering process, the lattice and bipolar contributions to the thermal conductivity are both greatly reduced without compromising too much the power factor, which leads to the achievement of high figure of merit (ZT) in both n-type and p-type bismuth telluride based nanocomposites. The ZT values are 1.59±0.16 for p-type Bi0.5Sb1.5Te3 and 0.98±0.07 for n-type Bi2Te2.7Se0.3 at 370 K, which are significantly high for bottom-up approaches. These results demonstrate that solution-chemistry approaches as facile, scalable and low-energy-intensive ways to achieve nanopowders, combined with liquid-phase sintering process, can open up great possibilities in developing high-performance low-price thermoelectric bulk nanocomposites. © 2016 Elsevier Ltd