Nanostructured Materials for Photovoltaic Energy

Group leader: Mónica Lira-Cantú

Website

Publications

  • A home for women’s voices

    Kafafi Z., Lira-Cantú M. Nature Energy; 6 (10): 939 - 940. 2021. 10.1038/s41560-021-00924-4. IF: 60.858

    [No abstract available]

  • Additive engineering for stable halide perovskite solar cells

    Pereyra C., Xie H., Lira-Cantu M. Journal of Energy Chemistry; 60: 599 - 634. 2021. 10.1016/j.jechem.2021.01.037. IF: 9.676

    Halide perovskite solar cells (PSCs) have already demonstrated power conversion efficiencies above 25%, which makes them one of the most attractive photovoltaic technologies. However, one of the main bottlenecks towards their commercialization is their long-term stability, which should exceed the 20-year mark. Additive engineering is an effective pathway for the enhancement of device lifetime. Additives applied as organic or inorganic compounds, improve crystal grain growth enhancing power conversion efficiency. The interaction of their functional groups with the halide perovskite (HP) absorber, as well as with the transport layers, results in defect passivation and ion immobilization improving device performance and stability. In this review, we briefly summarize the different types of additives recently applied in PSC to enhance not only efficiency but also long-term stability. We discuss the different mechanism behind additive engineering and the role of the functional groups of these additives for defect passivation. Special emphasis is given to their effect on the stability of PSCs under environmental conditions such as humidity, atmosphere, light irradiation (UV, visible) or heat, taking into account the recently reported ISOS protocols. We also discuss the relation between deep-defect passivation, non-radiative recombination and device efficiency, as well as the possible relation between shallow-defect passivation, ion immobilization and device operational stability. Finally, insights into the challenge and criteria for additive selection are provided for the further stability enhancement of PSCs. © 2021 Science Press

  • Balancing Charge Extraction for Efficient Back-Contact Perovskite Solar Cells by Using an Embedded Mesoscopic Architecture

    Lin X., Lu J., Raga S.R., McMeekin D.P., Ou Q., Scully A.D., Tan B., Chesman A.S.R., Deng S., Zhao B., Cheng Y.-B., Bach U. Advanced Energy Materials; 11 (21, 2100053) 2021. 10.1002/aenm.202100053. IF: 29.368

    As the performance of organic–inorganic halide perovskite solar cells approaches their practical limits, the use of back-contact architectures, which eliminate parasitic light absorption, provides an effective route toward higher device efficiencies. However, a poor understanding of the underlying device physics has limited further performance improvements. Here a mesoporous charge-transporting layer is introduced into quasi-interdigitated back-contact perovskite devices and the charge extraction behavior with an increased interfacial contact area is studied. The results show that the incorporation of a thin mesoporous titanium dioxide layer significantly shortens the charge-transfer lifetime and results in more efficient and balanced charge extraction dynamics. A high short-circuit current density of 21.3 mA cm–2 is achieved using a polycrystalline perovskite layer on a mesoscopic quasi-interdigitated back-contact electrode, a record for this type of device architecture. © 2021 Wiley-VCH GmbH

  • Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells

    Xie H., Wang Z., Chen Z., Pereyra C., Pols M., Gałkowski K., Anaya M., Fu S., Jia X., Tang P., Kubicki D.J., Agarwalla A., Kim H.-S., Prochowicz D., Borrisé X., Bonn M., Bao C., Sun X., Zakeeruddin S.M., Emsley L., Arbiol J., Gao F., Fu F., Wang H.I., Tielrooij K.-J., Stranks S.D., Tao S., Grätzel M., Hagfeldt A., Lira-Cantu M. Joule; 5 (5): 1246 - 1266. 2021. 10.1016/j.joule.2021.04.003. IF: 41.248

    Understanding defects is of paramount importance for the development of stable halide perovskite solar cells (PSCs). However, isolating their distinctive effects on device efficiency and stability is currently a challenge. We report that adding the organic molecule 3-phosphonopropionic acid (H3pp) to the halide perovskite results in unchanged overall optoelectronic performance while having a tremendous effect on device stability. We obtained PSCs with ∼21% efficiency that retain ∼100% of the initial efficiency after 1,000 h at the maximum power point under simulated AM1.5G illumination. The strong interaction between the perovskite and the H3pp molecule through two types of hydrogen bonds (H…I and O…H) leads to shallow point defect passivation that has a significant effect on device stability but not on the non-radiative recombination and device efficiency. We expect that our work will have important implications for the current understanding and advancement of operational PSCs. © 2021 Elsevier Inc.

  • Functionalized carbon dots on TiO2 for perovskite photovoltaics and stable photoanodes for water splitting

    Ansón-Casaos A., Hernández-Ferrer J., Vallan L., Xie H., Lira-Cantú M., Benito A.M., Maser W.K. International Journal of Hydrogen Energy; 46 (22): 12180 - 12191. 2021. 10.1016/j.ijhydene.2020.03.077. IF: 5.816

    Various types of fluorescent carbon nanoparticles, often called carbon dots (CDs), are synthesized by different polycondensation methods: microwave irradiation, hydrothermal conditions or solution chemistry at ambient temperature with subsequent chemical functionalization. The CDs are deposited on TiO2 films to be probed as electron transport layers in perovskite photovoltaics and the anode for photoelectrochemical water splitting. Nitrogen CDs, which do not contain oxygen, lead to an increase of around 50 mV in the open circuit voltage of perovskite solar cells. All the CD types produce an improved photocurrent in water splitting, particularly CDs that are functionalized with thiol groups and butyl chains. It is demonstrated that the modified electrode is stable under continuous operation. Other electrochemical characteristics of the electrode, such as the voltammogram shape, onset potentials and open circuit potentials, remain nearly unchanged upon the deposition of CDs. Only the incident photon to current conversion efficiency improves clearly, extending the absorption range by around 20 nm towards longer wavelengths. This study provides new data about mechanisms and electrode arrangements for improving the performance of n-type semiconductors in photovoltaic cells and photoelectrochemical hydrogen production. © 2020 Hydrogen Energy Publications LLC

  • Stress-mediated solution deposition method to stabilize ferroelectric BiFe1-xCrxO3 perovskite thin films with narrow bandgaps

    Jiménez R., Ricote J., Bretos I., Jiménez Riobóo R.J., Mompean F., Ruiz A., Xie H., Lira-Cantú M., Calzada M.L. Journal of the European Ceramic Society; 41 (6): 3404 - 3415. 2021. 10.1016/j.jeurceramsoc.2020.12.042. IF: 5.302

    Ferroelectric oxides with low bandgaps are mainly based on the BiFeO3 perovskite upon the partial substitution of iron with different cations. However, the structural stability of many of these perovskites is only possible by their processing at high pressures (HP, >1GPa) and high temperatures (HT, >700ºC). Preparation methods under these severe conditions are accessible to powders and bulk ceramics. However, transferring these conditions to the fabrication of thin films is a challenge, thus limiting their use in applications. Here, a chemical solution deposition method is devised, which overcomes many of these restrictions. It is based on the application of an external compressive-stress to the film sample during the thermal treatment required for the film crystallization, promoting the formation and stabilization of these HP perovskites. We demonstrate the concept on BiFe1-xCrxO3 (BFCO) thin films deposited on SrTiO3 (STO) substrates and with large chromium contents. The resulting BFCO perovskite films show narrow bandgaps (Eg∼2.57 eV) and an excellent ferroelectric response (remnant polarization, PR∼ 40 μC cm−2). The polarized thin films under illumination present a large out-put power of ∼6.4 μW cm−2, demonstrating their potential for using in self-powered multifunctional devices. This stress-mediated solution deposition method can be extended to other perovskite films which are unviable under conventional deposition methods. © 2021 Elsevier Ltd

  • The impact of spiro-OMeTAD photodoping on the reversible light-induced transients of perovskite solar cells

    Tan B., Raga S.R., Rietwyk K.J., Lu J., Fürer S.O., Griffith J.C., Cheng Y.-B., Bach U. Nano Energy; 82 (105658) 2021. 10.1016/j.nanoen.2020.105658. IF: 17.881

    Hole transporting materials (HTMs) play essential roles in facilitating hole extraction and suppressing recombination in lead halide perovskite solar cells (PSCs). High levels of p-doping in HTMs is necessary for achieving high device performance, attributed to an increased electrical conductivity. In this work, we provide evidences that the poor performance of PSCs with low levels of doping (i.e., 4 mol% spiro-OMeTAD+) in spiro-OMeTAD is mainly caused by the presence of a Schottky barrier at the perovskite/spiro-OMeTAD interface, hampering hole injection. Under continuous illumination at open-circuit condition, the barrier gradually diminishes, increasing the PSC power conversion efficiency by 70-fold after 7 h. This process is completely reversible, returning to the initial poor performance after dark storage. We attribute this improvement in performance to a gradual photodoping of spiro-OMeTAD, triggered by the transfer of photogenerated holes and mediated by the slow migration of halide anions from perovskite to compensate the newly formed spiro-OMeTAD+. In-situ parallel analyses with impedance spectroscopy (IS) and photoluminescence are employed to gain insights into the charge dynamics along with light soaking. We find that the Schottky barrier resistance overlays with the recombination signal at the high frequency arc of IS, having important implications for the IS data analysis for PSCs. The work elucidates a major mechanism causing the slow efficiency variations during light/dark cycling, commonly observed in PSCs, which complicates the determination of long-term stability. © 2021 Elsevier Ltd

  • Unraveling the Key Relationship Between Perovskite Capacitive Memory, Long Timescale Cooperative Relaxation Phenomena, and Anomalous J–V Hysteresis

    Hernández-Balaguera E., del Pozo G., Arredondo B., Romero B., Pereyra C., Xie H., Lira-Cantú M. Solar RRL; 5 (4, 2000707) 2021. 10.1002/solr.202000707. IF: 8.582

    Capacitive response at long time scales seems to remain an elusive feature in the analysis of the electrical properties of perovskite-based solar cells. It belongs to one of the critical anomalous effects that arises from the characteristic phenomenology of this type of emerging photovoltaic devices. Thereby, accurately deducing key capacitance feature of new light harvesting perovskites from electrical measurements represents a significant challenge regarding the interpretation of physical processes and the control of undesired mechanisms, such as slow dynamic effects and/or current density–voltage (J–V) hysteresis. Herein, it is shown that long timescale mechanisms that give rise to hysteresis in stable and high-efficiency quadruple-cation perovskites are not due to a classical capacitive behavior in the sense of ideal charge accumulation processes. Instead, it is a phenomenological consequence of slow memory-based capacitive currents and the underlying cooperative relaxations. A fractional dynamics approach, based on the idea of capacitance distribution in perovskite devices, reliably models the slow transient phenomena and the consequent scan-rate- and bias-dependent hysteresis. Observable for a wide variety of photovoltaic halide perovskites, distributed capacitive effects are rather universal anomalous phenomena, which can be related to the long-time electrical response and hysteresis. © 2021 Wiley-VCH GmbH