Advanced Electronic Materials and Devices Group

Group Leader: Jose Antonio Garrido

Publications

2019

  • Crossover from ballistic to diffusive thermal transport in suspended graphene membranes

    El Sachat A., Köenemann F., Menges F., Del Corro E., Garrido J.A., Sotomayor Torres C.M., Alzina F., Gotsmann B. 2D Materials; 6 (2, 025034) 2019. 10.1088/2053-1583/ab097d. IF: 7.343

    We report heat transport measurements on suspended single-layer graphene disks with radius of 150-1600 nm using a high-vacuum scanning thermal microscope. The results of this study revealed a radius-dependent thermal contact resistance between tip and graphene, with values between 1.15 and 1.52 × 108 KW-1. The observed scaling of thermal resistance with radius is interpreted in terms of ballistic phonon transport in suspended graphene discs with radius smaller than 775 nm. In larger suspended graphene discs (radius >775 nm), the thermal resistance increases with radius, which is attributed to in-plane heat transport being limited by phonon-phonon resistive scattering processes, which resulted in a transition from ballistic to diffusive thermal transport. In addition, by simultaneously mapping topography and steady-state heat flux signals between a self-heated scanning probe sensor and graphene with 17 nm thermal spatial resolution, we demonstrated that the surface quality of the suspended graphene and its connectivity with the Si/SiO2 substrate play a determining role in thermal transport. Our approach allows the investigation of heat transport in suspended graphene at sub-micrometre length scales and overcomes major limitations of conventional experimental methods usually caused by extrinsic thermal contact resistances, assumptions on the value of the graphene's optical absorbance and limited thermal spatial resolution. © 2019 IOP Publishing Ltd.


  • High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors

    Masvidal-Codina E., Illa X., Dasilva M., Calia A.B., Dragojević T., Vidal-Rosas E.E., Prats-Alfonso E., Martínez-Aguilar J., De la Cruz J.M., Garcia-Cortadella R., Godignon P., Rius G., Camassa A., Del Corro E., Bousquet J., Hébert C., Durduran T., Villa R., Sanchez-Vives M.V., Garrido J.A., Guimerà-Brunet A. Nature Materials; 18 (3): 280 - 288. 2019. 10.1038/s41563-018-0249-4. IF: 38.887

    Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.


  • Long-Term Functionality of Transversal Intraneural Electrodes is Improved by Dexamethasone Treatment

    De La Oliva N., Del Valle J., Delgado-Martinez I., Mueller M., Stieglitz T., Navarro X. IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (3, 8633873): 457 - 464. 2019. 10.1109/TNSRE.2019.2897256. IF: 3.478

    Neuroprostheses aimed to restore lost functions after a limb amputation are based on the interaction with the nervous system by means of neural interfaces. Among the different designs, intraneural electrodes implanted in peripheral nerves represent a good strategy to stimulate nerve fibers to send sensory feedback and to record nerve signals to control the prosthetic limb. However, intraneural electrodes, as any device implanted in the body, induce a foreign body reaction (FBR) that results in the tissue encapsulation of the device. The FBR causes a progressive decline of the electrode functionality over time due to the physical separation between the electrode active sites and the axons to the interface. Modulation of the inflammatory response has arisen as a good strategy to reduce the FBR and maintain electrode functionality. In this paper, transversal intraneural multi-channel electrodes (TIMEs) were implanted in the rat sciatic nerve and tested for three months to evaluate stimulation and recording capabilities under chronic administration of dexamethasone. Dexamethasone treatment significantly reduced the threshold for evoking muscle responses during the follow-up compared to saline-treated animals, without affecting the selectivity of stimulation. However, dexamethasone treatment did not improve the signal-to-noise ratio of the recorded neural signals. Dexamethasone treatment allowed to maintain more working active sites along time than saline treatment. Thus, systemic administration of dexamethasone appears as a useful treatment in chronically implanted animals with neural electrodes as it increases the number of functioning contacts of the implanted TIME and reduces the intensity needed to stimulate the nerve. © 2001-2011 IEEE.


  • Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces

    Bueno R., Marciello M., Moreno M., Sánchez-Sánchez C., Martinez J.I., Martinez L., Prats-Alfonso E., Guimerà-Brunet A., Garrido J.A., Villa R., Mompean F., García-Hernandez M., Huttel Y., Morales M.D.P., Briones C., López M.F., Ellis G.J., Vázquez L., Martín-Gago J.A. ACS Omega; 4 (2): 3287 - 3297. 2019. 10.1021/acsomega.8b03152. IF: 2.584

    Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed. © Copyright 2019 American Chemical Society.


2018

  • Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrode Implants in the Peripheral Nerve of the Rat

    De la Oliva N., Navarro X., del Valle J. Anatomical Record; 301 (10): 1722 - 1733. 2018. 10.1002/ar.23920. IF: 1.373

    Intraneural electrodes must be in intimate contact with nerve fibers to have a proper function, but this interface is compromised due to the foreign body reaction (FBR). The FBR is characterized by a first inflammatory phase followed by a second anti-inflammatory and fibrotic phase, which results in the formation of a tissue capsule around the implant, causing physical separation between the active sites of the electrode and the nerve fibers. We have tested systemically several anti-inflammatory drugs such as dexamethasone (subcutaneous), ibuprofen and maraviroc (oral) to reduce macrophage activation, as well as clodronate liposomes (intraperitoneal) to reduce monocyte/macrophage infiltration, and sildenafil (oral) as an antifibrotic drug to reduce collagen deposition in an FBR model with longitudinal Parylene C intraneural implants in the rat sciatic nerve. Treatment with dexamethasone, ibuprofen, or clodronate significantly reduced the inflammatory reaction in the nerve in comparison to the saline group after 2 weeks of the implant, whereas sildenafil and maraviroc had no effect on infiltration of macrophages in the nerve. However, only dexamethasone was able to significantly reduce the matrix deposition around the implant. Similar positive results were obtained with dexamethasone in the case of polyimide-based intraneural implants, another polymer substrate for the electrode. These results indicate that inflammation triggers the FBR in peripheral nerves, and that anti-inflammatory treatment with dexamethasone may have beneficial effects on lengthening intraneural interface functionality. Anat Rec, 301:1722–1733, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.


  • Flexible Graphene Solution-Gated Field-Effect Transistors: Efficient Transducers for Micro-Electrocorticography

    Hébert C., Masvidal-Codina E., Suarez-Perez A., Calia A.B., Piret G., Garcia-Cortadella R., Illa X., Del Corro Garcia E., De la Cruz Sanchez J.M., Casals D.V., Prats-Alfonso E., Bousquet J., Godignon P., Yvert B., Villa R., Sanchez-Vives M.V., Guimerà-Brunet A., Garrido J.A. Advanced Functional Materials; 28 (12, 1703976) 2018. 10.1002/adfm.201703976. IF: 13.325

    Brain–computer interfaces and neural prostheses based on the detection of electrocorticography (ECoG) signals are rapidly growing fields of research. Several technologies are currently competing to be the first to reach the market; however, none of them fulfill yet all the requirements of the ideal interface with neurons. Thanks to its biocompatibility, low dimensionality, mechanical flexibility, and electronic properties, graphene is one of the most promising material candidates for neural interfacing. After discussing the operation of graphene solution-gated field-effect transistors (SGFET) and characterizing their performance in saline solution, it is reported here that this technology is suitable for μ-ECoG recordings through studies of spontaneous slow-wave activity, sensory-evoked responses on the visual and auditory cortices, and synchronous activity in a rat model of epilepsy. An in-depth comparison of the signal-to-noise ratio of graphene SGFETs with that of platinum black electrodes confirms that graphene SGFET technology is approaching the performance of state-of-the art neural technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


  • Lipid Monolayer Formation and Lipid Exchange Monitored by a Graphene Field-Effect Transistor

    Blaschke B.M., Böhm P., Drieschner S., Nickel B., Garrido J.A. Langmuir; 34 (14): 4224 - 4233. 2018. 10.1021/acs.langmuir.8b00162. IF: 3.789

    Anionic and cationic lipids are key molecules involved in many cellular processes; their distribution in biomembranes is highly asymmetric, and their concentration is well-controlled. Graphene solution-gated field-effect transistors (SGFETs) exhibit high sensitivity toward the presence of surface charges. Here, we establish conditions that allow the observation of the formation of charged lipid layers on solution-gated field-effect transistors in real time. We quantify the electrostatic screening of electrolyte ions and derive a model that explains the influence of charged lipids on the ion sensitivity of graphene SGFETs. The electrostatic model is validated using structural information from X-ray reflectometry measurements, which show that the lipid monolayer forms on graphene. We demonstrate that SGFETs can be used to detect cationic lipids by self-exchange of lipids. Furthermore, SGFETs allow measuring the kinetics of layer formation induced by vesicle fusion or spreading from a reservoir. Because of the high transconductance and low noise of the electrical readout, we can observe characteristic conductance spikes that we attribute to bouncing-off events of lipid aggregates from the SGFET surface, suggesting a great potential of graphene SGFETs to measure the on-off kinetics of small aggregates interacting with supported layers. © 2018 American Chemical Society.


  • On the use of Parylene C polymer as substrate for peripheral nerve electrodes

    De La Oliva N., Mueller M., Stieglitz T., Navarro X., Del Valle J. Scientific Reports; 8 (1, 5965) 2018. 10.1038/s41598-018-24502-z. IF: 4.122

    Parylene C is a highly flexible polymer used in several biomedical implants. Since previous studies have reported valuable biocompatible and manufacturing characteristics for brain and intraneural implants, we tested its suitability as a substrate for peripheral nerve electrodes. We evaluated 1-year-aged in vitro samples, where no chemical differences were observed and only a slight deviation on Young's modulus was found. The foreign body reaction (FBR) to longitudinal Parylene C devices implanted in the rat sciatic nerve for 8 months was characterized. After 2 weeks, a capsule was formed around the device, which continued increasing up to 16 and 32 weeks. Histological analyses revealed two cell types implicated in the FBR: macrophages, in contact with the device, and fibroblasts, localized in the outermost zone after 8 weeks. Molecular analysis of implanted nerves comparing Parylene C and polyimide devices revealed a peak of inflammatory cytokines after 1 day of implant, returning to low levels thereafter. Only an increase of CCL2 and CCL3 was found at chronic time-points for both materials. Although no molecular differences in the FBR to both polymers were found, the thick tissue capsule formed around Parylene C puts some concern on its use as a scaffold for intraneural electrodes. © 2018 The Author(s).


  • Photocurrent generation of biohybrid systems based on bacterial reaction centers and graphene electrodes

    Csiki R., Drieschner S., Lyuleeva A., Cattani-Scholz A., Stutzmann M., Garrido J.A. Diamond and Related Materials; 89: 286 - 292. 2018. 10.1016/j.diamond.2018.09.005. IF: 2.232

    The direct conversion of sunlight into chemical energy via photosynthesis is a unique capability of plants and some bacterial species. Aimed at mimicking this energy conversion process, the combination of inorganic substrates and organic photoactive proteins into an artificial biohybrid system is of a great interest for artificial bio-photovoltaic applications. It also allows to better understand charge transfer processes involved in the photosynthetic chain. In this work, single layer graphene (SLG) and multilayer graphene (MLG) electrodes are used as a platform for the immobilization of reaction centers (RCs) from purple bacteria Rhodobacter sphaeroides, a protein complex responsible for the generation of photo-excited charges. Electrochemical experiments with graphene electrodes and redox molecules reveal fundamental differences in the charge transfer processes for SLG and MLG films. We demonstrate that both graphene-based materials enable the immobilization of RCs without loss of functionality, attested by a photocurrent generation under illumination with IR-light at a wavelength of 870 nm. Furthermore, we report on the dependence of the generated photocurrent on the applied bias voltage, as well as on the presence of charge mediators in the surrounding electrolyte. This work demonstrates that SLG and MLG are a suitable platform for RC immobilization and subsequent photocurrent generation, suggesting a promising potential for graphene-based materials in bio-photovoltaics. © 2018 Elsevier B.V.


  • Segregation of motor and sensory axons regenerating through bicompartmental tubes by combining extracellular matrix components with neurotrophic factors

    del Valle J., Santos D., Delgado-Martínez I., de la Oliva N., Giudetti G., Micera S., Navarro X. Journal of Tissue Engineering and Regenerative Medicine; 12 (4): e1991 - e2000. 2018. 10.1002/term.2629. IF: 4.089

    Segregation of regenerating motor and sensory axons may be a good strategy to improve selective functionality of regenerative interfaces to provide closed-loop commands. Provided that extracellular matrix components and neurotrophic factors exert guidance effects on different neuronal populations, we assessed in vivo the potential of separating sensory and motor axons regenerating in a bicompartmental Y-type tube, with each branch prefilled with an adequate combination of extracellular matrix and neurotrophic factors. The severed rat sciatic nerve was repaired using a bicompartmental tube filled with a collagen matrix enriched with fibronectin (FN) and brain-derived neurotrophic factor (BDNF) encapsulated in poly-lactic co-glycolic acid microspheres (FN + MP.BDNF) in one compartment to preferentially attract motor axons and collagen enriched with laminin (LM) and nerve growth factor (NGF) and neurotrophin-3 (NT-3) in microspheres (LM + MP.NGF/NT-3) in the other compartment for promoting sensory axons regeneration. Control animals were implanted with the same Y-tube with a collagen matrix with microspheres (MP) containing PBS (Col + MP.PBS). By using retrotracer labelling, we found that LM + MP.NGF/NT-3 did not attract higher number of regenerated sensory axons compared with controls, and no differences were observed in sensory functional recovery. However, FN + MP.BDNF guided a higher number of regenerating motor axons compared with controls, improving also motor recovery. A small proportion of sensory axons with large soma size, likely proprioceptive neurons, was also attracted to the FN + MP.BDNF compartment. These results demonstrate that muscular axonal guidance can be modulated in vivo by the addition of fibronectin and BDNF. Copyright © 2017 John Wiley & Sons, Ltd.


  • Single-layer graphene modulates neuronal communication and augments membrane ion currents

    Pampaloni N.P., Lottner M., Giugliano M., Matruglio A., D’Amico F., Prato M., Garrido J.A., Ballerini L., Scaini D. Nature Nanotechnology; 13 (8): 755 - 764. 2018. 10.1038/s41565-018-0163-6. IF: 37.490

    The use of graphene-based materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene’s peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that single-layer graphene increases neuronal firing by altering membrane-associated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene–ion interactions that are maximized when single-layer graphene is deposited on electrically insulating substrates are crucial to these effects. © 2018, The Author(s).


  • Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants

    de la Oliva N., Navarro X., del Valle J. Journal of Biomedical Materials Research - Part A; 106 (3): 746 - 757. 2018. 10.1002/jbm.a.36274. IF: 3.231

    The foreign body reaction (FBR) against an implanted device is characterized by the formation of a fibrotic tissue around the implant. In the case of interfaces for peripheral nerves, used to stimulate specific group of axons and to record different nerve signals, the FBR induces a matrix deposition around the implant creating a physical separation between nerve fibers and the interface that may reduce its functionality over time. In order to understand how the FBR to intraneural interfaces evolves, polyimide non-functional devices were implanted in rat peripheral nerve. Functional tests (electrophysiological, pain and locomotion) and histological evaluation demonstrated that implanted devices did not cause any alteration in nerve function, in myelinated axons or in nerve architecture. The inflammatory response due to the surgical implantation decreased after 2 weeks. In contrast, inflammation was higher and more prolonged in the device implanted nerves with a peak after 2 weeks. With regard to tissue deposition, a tissue capsule appeared soon around the devices, acquiring maximal thickness at 2 weeks and being remodeled subsequently. Immunohistochemical analysis revealed two different cell types implicated in the FBR in the nerve: macrophages as the first cells in contact with the interface and fibroblasts that appear later at the edge of the capsule. Our results describe how the FBR against a polyimide implant in the peripheral nerve occurs and which are the main cellular players. Increasing knowledge of these responses will help to improve strategies to decrease the FBR against intraneural implants and to extend their usability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 746–757, 2018. © 2017 Wiley Periodicals, Inc.


  • Understanding the bias dependence of low frequency noise in single layer graphene FETs

    Mavredakis N., Garcia Cortadella R., Bonaccini Calia A., Garrido J.A., Jiménez D. Nanoscale; 10 (31): 14947 - 14956. 2018. 10.1039/c8nr04939d. IF: 7.233

    This letter investigates the bias-dependent low frequency noise of single layer graphene field-effect transistors. Noise measurements have been conducted with electrolyte-gated graphene transistors covering a wide range of gate and drain bias conditions for different channel lengths. A new analytical model that accounts for the propagation of the local noise sources in the channel to the terminal currents and voltages is proposed in this paper to investigate the noise bias dependence. Carrier number and mobility fluctuations are considered as the main causes of low frequency noise and the way these mechanisms contribute to the bias dependence of the noise is analyzed in this work. Typically, normalized low frequency noise in graphene devices has been usually shown to follow an M-shape dependence versus gate voltage with the minimum near the charge neutrality point (CNP). Our work reveals for the first time the strong correlation between this gate dependence and the residual charge which is relevant in the vicinity of this specific bias point. We discuss how charge inhomogeneity in the graphene channel at higher drain voltages can contribute to low frequency noise; thus, channel regions nearby the source and drain terminals are found to dominate the total noise for gate biases close to the CNP. The excellent agreement between the experimental data and the predictions of the analytical model at all bias conditions confirms that the two fundamental 1/f noise mechanisms, carrier number and mobility fluctuations, must be considered simultaneously to properly understand the low frequency noise in graphene FETs. The proposed analytical compact model can be easily implemented and integrated in circuit simulators, which can be of high importance for graphene based circuits' design. © The Royal Society of Chemistry.


  • Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors

    Drieschner S., Seckendorff M.V., Corro E.D., Wohlketzetter J., Blaschke B.M., Stutzmann M., Garrido J.A. Nanotechnology; 29 (22, 225402) 2018. 10.1088/1361-6528/aab4c2. IF: 3.404

    Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm-3 and 0.16 F cm-2. The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams. © 2018 IOP Publishing Ltd.


2017

  • Electrochemical characterization of GaN surface states

    Winnerl A., Garrido J.A., Stutzmann M. Journal of Applied Physics; 122 (4, 045302) 2017. 10.1063/1.4995429. IF: 2.068

    In this work, we present a systematic study of the electrochemical properties of metal-organic chemical vapor deposition and hybrid vapor phase epitaxy grown n-type GaN in aqueous electrolytes. For this purpose, we perform cyclic voltammetry and impedance spectroscopy measurements over a wide range of potentials and frequencies, using a pure aqueous electrolyte and adding two different types of redox couples, as well as applying different surface treatments to the GaN electrodes. For Ga-polar GaN electrodes, the charge transfer to an electrolyte is dominated by surface states, which are not related to dislocations and are independent of the specific growth technique. These surface states can be modified by the surface treatment; they are generated by etching in HCl and are passivated by oxidation. Different surface defect states are present on N-polar GaN electrodes which do not significantly contribute to the charge transfer across the GaN/electrolyte interface. © 2017 Author(s).


  • Frequency response of electrolyte-gated graphene electrodes and transistors

    Drieschner S., Guimerà A., Cortadella R.G., Viana D., Makrygiannis E., Blaschke B.M., Vieten J., Garrido J.A. Journal of Physics D: Applied Physics; 50 (9, 095304) 2017. 10.1088/1361-6463/aa5443. IF: 2.588

    The interface between graphene and aqueous electrolytes is of high importance for applications of graphene in the field of biosensors and bioelectronics. The graphene/electrolyte interface is governed by the low density of states of graphene that limits the capacitance near the Dirac point in graphene and the sheet resistance. While several reports have focused on studying the capacitance of graphene as a function of the gate voltage, the frequency response of graphene electrodes and electrolyte-gated transistors has not been discussed so far. Here, we report on the impedance characterization of single layer graphene electrodes and transistors, showing that due to the relatively high sheet resistance of graphene, the frequency response is governed by the distribution of resistive and capacitive circuit elements along the graphene/electrolyte interface. Based on an analytical solution for the impedance of the distributed circuit elements, we model the graphene/electrolyte interface both for the electrode and the transistor configurations. Using this model, we can extract the relevant material and device parameters such as the voltage-dependent intrinsic sheet and series resistances as well as the interfacial capacitance. The model also provides information about the frequency threshold of electrolyte-gated graphene transistors, above which the device exhibits a non-resistive response, offering an important insight into the suitable frequency range of operation of electrolyte-gated graphene devices. © 2017 IOP Publishing Ltd.


  • GaN surface states investigated by electrochemical studies

    Winnerl A., Garrido J.A., Stutzmann M. Applied Physics Letters; 110 (10, 101602) 2017. 10.1063/1.4977947. IF: 3.411

    We present a systematic study of electrochemically active surface states on MOCVD-grown n-type GaN in aqueous electrolytes using cyclic voltammetry and impedance spectroscopy over a wide range of potentials and frequencies. In order to alter the surface states, the GaN samples are either etched or oxidized, and the influence of the surface treatment on the defect-mediated charge transfer to the electrolyte is investigated. Etching in HCl removes substoichiometric GaOx, and leads to a pronounced density of electrochemically active surface states. Oxidation effectively removes these surface states. © 2017 Author(s).


  • Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings

    Kireev D., Zadorozhnyi I., Qiu T., Sarik D., Brings F., Wu T., Seyock S., Maybeck V., Lottner M., Blaschke B.M., Garrido J., Xie X., Vitusevich S., Wolfrum B., Offenhäusser A. IEEE Transactions on Nanotechnology; 16 (1, 7782310): 140 - 147. 2017. 10.1109/TNANO.2016.2639028. IF: 2.485

    Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO2/Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V-1, and mobility over 1750 cm2·V-1·s-1. In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing. © 2016 IEEE.


  • Graphene in the Design and Engineering of Next-Generation Neural Interfaces

    Kostarelos K., Vincent M., Hebert C., Garrido J.A. Advanced Materials; 29 (42, 1700909) 2017. 10.1002/adma.201700909. IF: 19.791

    Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene-based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


  • Interfacing neurons on carbon nanotubes covered with diamond

    Seyock S., Maybeck V., Scorsone E., Rousseau L., Hébert C., Lissorgues G., Bergonzo P., Offenhäusser A. RSC Advances; 7 (1): 153 - 160. 2017. 10.1039/c6ra20207a. IF: 3.108

    A recently discovered material, carbon nanotubes covered with diamond (DCNTs) was tested for its suitability in bioelectronics applications. Diamond shows advantages for bioelectronics applications (wide electro chemical window and bioinertness). This study investigates the effect of electrode surface shape (flat or three dimensional) on cell growth and behavior. For comparison, flat nanocrystalline diamond substrates were used. Primary embryonic neurons were grown on top of the structures and neither incorporated the structures nor did they grow in between the single structures. The interface was closely examined using focused ion beam (FIB) and scanning electron microscopy. Of special interest was the interface between cell and substrate. 5% to 25% of the cell membrane adhered to the substrate, which fits the theoretical estimated value. While investigating the conformity of the neurons, it could be observed that the cell membrane attaches to different heights of the tips of the 3D structure. However, the aspect ratio of the structures had no effect on the cell viability. These results let us assume that not more than 25% of cell attachment is needed for the survival of a functional neuronal cell. © The Royal Society of Chemistry.


  • Mapping brain activity with flexible graphene micro-transistors

    Blaschke B.M., Tort-Colet N., Guimerà-Brunet A., Weinert J., Rousseau L., Heimann A., Drieschner S., Kempski O., Villa R., Sanchez-Vives M.V., Garrido J.A. 2D Materials; 4 (2, 025040) 2017. 10.1088/2053-1583/aa5eff. IF: 6.937

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants. © 2017 IOP Publishing Ltd.


  • Protecting a Diamond Quantum Memory by Charge State Control

    Pfender M., Aslam N., Simon P., Antonov D., Thiering G., Burk S., Fávaro De Oliveira F., Denisenko A., Fedder H., Meijer J., Garrido J.A., Gali A., Teraji T., Isoya J., Doherty M.W., Alkauskas A., Gallo A., Grüneis A., Neumann P., Wrachtrup J. Nano Letters; 17 (10): 5931 - 5937. 2017. 10.1021/acs.nanolett.7b01796. IF: 12.712

    In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and VSi-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability. © 2017 American Chemical Society.


  • Tuning the electronic properties of monolayer and bilayer transition metal dichalcogenide compounds under direct out-of-plane compression

    García Á.M., Corro E.D., Kalbac M., Frank O. Physical Chemistry Chemical Physics; 19 (20): 13333 - 13340. 2017. 10.1039/c7cp00012j. IF: 4.123

    The band-gap modulation of atomically thin semiconductor transition metal dichalcogenides (MX2; M = Mo or W, X = S or Se) under direct out-of-plane compression is systematically studied by means of the density functional theory (DFT) formalism including spin-orbit coupling (SOC) and dispersion correction (D3). The out-of-plane compared with other regimes stress regime significantly reduces the pressure threshold at which the semimetal state is achieved (2.7-3.1 and 1.9-3.2 GPa for mono- and bilayer systems, respectively). Structural, electronic and bonding properties are investigated for a better understanding of the electronic transitions achieved with compression. A notable relationship with the formal ionic radius (M4+ and X2-) is obtained. On one hand, the monolayer systems with the smallest transition metal radius (Mo4+ < W4+) reach the semimetal state at lower stress, on the other hand, for bilayer specimens the transition to semimetal is observed earlier for compounds with the smallest chalcogenide radius (S2- < Se2-). Moreover, the appearance of non-covalent interaction (NCI) domains in the semimetal state confirms that the out-of-plane compression promotes the interaction between sulfur atoms in the single layered systems and reduces the interlayer space in bilayer configurations. Our predictions, supported by experimental evidences in the case of monolayered MoS2, demonstrate new alternative methods for tuning the electronic properties of transition metal dichalcogenides under direct out-of-plane compression. © 2017 the Owner Societies.


2016

  • Flexible graphene transistors for recording cell action potentials

    Blaschke B.M., Lottner M., Drieschner S., Calia A.B., Stoiber K., Rousseau L., Lissourges G., Garrido J.A. 2D Materials; 3 (2, 025007) 2016. 10.1088/2053-1583/3/2/025007. IF: 9.611

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor's transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics. © 2016 IOP Publishing Ltd.


  • High surface area graphene foams by chemical vapor deposition

    Drieschner S., Weber M., Wohlketzetter J., Vieten J., Makrygiannis E., Blaschke B.M., Morandi V., Colombo L., Bonaccorso F., Garrido J.A. 2D Materials; 3 (4, 045013) 2016. 10.1088/2053-1583/3/4/045013. IF: 9.611

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 &mu;m. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required. © 2016 IOP Publishing Ltd.


  • Suppression of Photoanodic Surface Oxidation of n-Type 6H-SiC Electrodes in Aqueous Electrolytes

    Sachsenhauser M., Walczak K., Hampel P.A., Stutzmann M., Sharp I.D., Garrido J.A. Langmuir; 32 (6): 1637 - 1644. 2016. 10.1021/acs.langmuir.5b04376. IF: 3.993

    The photoelectrochemical characterization of silicon carbide (SiC) electrodes is important for enabling a wide range of potential applications for this semiconductor. However, photocorrosion of the SiC surface remains a key challenge, because this process considerably hinders the deployment of this material into functional devices. In this report, we use cyclic voltammetry to investigate the stability of n-type 6H-SiC photoelectrodes in buffered aqueous electrolytes. For measurements in pure Tris buffer, photogenerated holes accumulate at the interface under anodic polarization, resulting in the formation of a porous surface oxide layer. Two possibilities are presented to significantly enhance the stability of the SiC photoelectrodes. In the first approach, redox molecules are added to the buffer solution to kinetically facilitate hole transfer to these molecules, and in the second approach, water oxidation in the electrolyte is induced by depositing a cobalt phosphate catalyst onto the semiconductor surface. Both methods are found to effectively suppress photocorrosion of the SiC electrodes, as confirmed by atomic force microscopy and X-ray photoelectron spectroscopy measurements. The presented study provides straightforward routes to stabilize n-type SiC photoelectrodes in aqueous electrolytes, which is essential for a possible utilization of this material in the fields of photocatalysis and multimodal biosensing. © 2016 American Chemical Society.


  • Surface State Mediated Electron Transfer Across the N-Type SiC/Electrolyte Interface

    Sachsenhauser M., Sharp I.D., Stutzmann M., Garrido J.A. Journal of Physical Chemistry C; 120 (12): 6524 - 6533. 2016. 10.1021/acs.jpcc.5b11569. IF: 4.509

    Understanding the mechanisms of charge transfer across the semiconductor/electrolyte interface is a basic prerequisite for a variety of practical applications. In particular, electrically active surface states located in the semiconductor band gap are expected to play an important role, but direct experimental evidence of surface states has proven to be challenging, and further experimental studies are required to verify their influence on the exchange of charge carriers between semiconductor and electrolyte. Due to its wide band gap, chemical stability, and controllable surface termination, silicon carbide (SiC) provides an excellent model system for this purpose. In this report, we provide a fundamental electrochemical study of n-type 6H-SiC and 4H-SiC electrodes in aqueous electrolytes containing the ferricyanide/ferrocyanide redox couple. Cyclic voltammetry and impedance spectroscopy measurements are performed over a wide range of potentials to determine the energetic positions of the SiC band edges and to investigate the electron-transfer kinetics between SiC and the ferricyanide molecules. For both polytypes, a broad distribution of surface states with energy levels close to the conduction band is found to mediate electron transfer, resulting in deviations of the observed charge transport characteristics from the predictions of well-established models. Moreover, a detailed evaluation of the impedance data allows for explicit correlation of the charge-transfer resistance associated with the ferricyanide reduction reaction with the potential-dependent distribution of surface states. In addition to the relevance of our studies for advancing the implementation of SiC in biosensing, electrocatalytic, and photocatalytic applications, the presented methodology can also be adopted for fundamental electrochemical investigations of other semiconductor electrodes. (Figure Presented). © 2016 American Chemical Society.


  • α,ω -dihexyl-sexithiophene thin films for solution-gated organic field-effect transistors

    Schamoni H., Noever S., Nickel B., Stutzmann M., Garrido J.A. Applied Physics Letters; 108 (7, 073301) 2016. 10.1063/1.4942407. IF: 3.142

    While organic semiconductors are being widely investigated for chemical and biochemical sensing applications, major drawbacks such as the poor device stability and low charge carrier mobility in aqueous electrolytes have not yet been solved to complete satisfaction. In this work, solution-gated organic field-effect transistors (SGOFETs) based on the molecule α,ω-dihexyl-sexithiophene (DH6T) are presented as promising platforms for in-electrolyte sensing. Thin films of DH6T were investigated with regard to the influence of the substrate temperature during deposition on the grain size and structural order. The performance of SGOFETs can be improved by choosing suitable growth parameters that lead to a two-dimensional film morphology and a high degree of structural order. Furthermore, the capability of the SGOFETs to detect changes in the pH or ionic strength of the gate electrolyte is demonstrated and simulated. Finally, excellent transistor stability is confirmed by continuously operating the device over a period of several days, which is a consequence of the low threshold voltage of DH6T-based SGOFETs. Altogether, our results demonstrate the feasibility of high performance and highly stable organic semiconductor devices for chemical or biochemical applications. © 2016 AIP Publishing LLC.


2015

  • Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization

    Seifert M., Vargas J.E.B., Bobinger M., Sachsenhauser M., Cummings A.W., Roche S., Garrido J.A. 2D Materials; 2 (2, 024008) 2015. 10.1088/2053-1583/2/2/024008. IF: 0.000

    Grain boundaries, inevitably present in chemical vapor deposited graphene, are expected to have considerable impact on the development of graphene-based hybrid materials with tailored material properties.Wedemonstrate here the critical role of polycrystallinity on the chemical functionalization of graphene comparing ozone-induced oxidation with remote plasma hydrogenation.Weshow that graphene oxidation and hydrogenation occur in two consecutive stages upon increasing defect density: an initial step in which surface-bound functional groups are generated, followed by the creation of vacancies. Remarkably, we find that hydrogenation yields homogeneously distributed defects while ozone-induced defects are preferentially accumulated at the grain boundaries eventually provoking local cracking of the structure. Supported by quantum simulations, our experimental findings reveal distinct electronic transport regimes depending on the density and distribution of induced defects on the polycrystalline graphene films. Our findings highlight the key role played by grain boundaries during graphene functionalization, and at the same time provide a novel perspective to tailor the properties of polycrystalline graphene. © 2015 IOP Publishing Ltd.


  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    Ferrari A.C., Bonaccorso F., Fal'ko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F.H.L., Palermo V., Pugno N., Garrido J.A., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhänen T., Morpurgo A., Coleman J.N., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G.F., Guinea F., Dekker C., Barbone M., Sun Z., Galiotis C., Grigorenko A.N., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G.M., Hee Hong B., Ahn J.-H., Min Kim J., Zirath H., Van Wees B.J., Van Der Zant H., Occhipinti L., Di Matteo A., Kinloch I.A., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S.R.T., Tannock Q., Löfwander T., Kinaret J. Nanoscale; 7 (11): 4598 - 4810. 2015. 10.1039/c4nr01600a. IF: 7.394

    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field. © The Royal Society of Chemistry 2015.