Staff directory Pablo Guardia Giros

Pablo Guardia Giros

Visiting Postdoctoral Researcher
Nanobioelectronics and Biosensors



  • Architecting Graphene Oxide Rolled-Up Micromotors: A Simple Paper-Based Manufacturing Technology

    Baptista-Pires L., Orozco J., Guardia P., Merkoçi A. Small; 14 (3, 1702746) 2018. 10.1002/smll.201702746. IF: 9.598

    A graphene oxide rolled-up tube production process is reported using wax-printed membranes for the fabrication of on-demand engineered micromotors at different levels of oxidation, thickness, and lateral dimensions. The resultant graphene oxide rolled-up tubes can show magnetic and catalytic movement within the addition of magnetic nanoparticles or sputtered platinum in the surface of graphene-oxide-modified wax-printed membranes prior to the scrolling process. As a proof of concept, the as-prepared catalytic graphene oxide rolled-up micromotors are successfully exploited for oil removal from water. This micromotor production technology relies on an easy, operator-friendly, fast, and cost-efficient wax-printed paper-based method and may offer a myriad of hybrid devices and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei/1.

  • Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials

    Zhang Y., Liu Y., Lim K.H., Xing C., Li M., Zhang T., Tang P., Arbiol J., Llorca J., Ng K.M., Ibáñez M., Guardia P., Prato M., Cadavid D., Cabot A. Angewandte Chemie - International Edition; 2018. 10.1002/anie.201809847. IF: 12.102

    In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim


  • Fe3O4@NiFexOy Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte

    Luo Z., Martí-Sànchez S., Nafria R., Joshua G., De La Mata M., Guardia P., Flox C., Martínez-Boubeta C., Simeonidis K., Llorca J., Morante J.R., Arbiol J., Ibáñez M., Cabot A. ACS Applied Materials and Interfaces; 8 (43): 29461 - 29469. 2016. 10.1021/acsami.6b09888. IF: 7.145

    The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte. © 2016 American Chemical Society.