Staff directory Xavier Illa Vila

Xavier Illa Vila

Visiting Technician
CNM
Advanced Electronic Materials and Devices

Publications

2020

  • Distortion-Free Sensing of Neural Activity Using Graphene Transistors

    Garcia-Cortadella R., Masvidal-Codina E., De la Cruz J.M., Schäfer N., Schwesig G., Jeschke C., Martinez-Aguilar J., Sanchez-Vives M.V., Villa R., Illa X., Sirota A., Guimerà A., Garrido J.A. Small; 16 (16, 1906640) 2020. 10.1002/smll.201906640. IF: 11.459

    Graphene solution-gated field-effect transistors (g-SGFETs) are promising sensing devices to transduce electrochemical potential signals in an electrolyte bath. However, distortion mechanisms in g-SGFET, which can affect signals of large amplitude or high frequency, have not been evaluated. Here, a detailed characterization and modeling of the harmonic distortion and non-ideal frequency response in g-SGFETs is presented. This accurate description of the input–output relation of the g-SGFETs allows to define the voltage- and frequency-dependent transfer functions, which can be used to correct distortions in the transduced signals. The effect of signal distortion and its subsequent calibration are shown for different types of electrophysiological signals, spanning from large amplitude and low frequency cortical spreading depression events to low amplitude and high frequency action potentials. The thorough description of the distortion mechanisms presented in this article demonstrates that g-SGFETs can be used as distortion-free signal transducers not only for neural sensing, but also for a broader range of applications in which g-SGFET sensors are used. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


  • Improved metal-graphene contacts for low-noise, high-density microtransistor arrays for neural sensing

    Schaefer N., Garcia-Cortadella R., Calia A.B., Mavredakis N., Illa X., Masvidal-Codina E., Cruz J.D.L., Corro E.D., Rodríguez L., Prats-Alfonso E., Bousquet J., Martínez-Aguilar J., Pérez-Marín A.P., Hébert C., Villa R., Jiménez D., Guimerà-Brunet A., Garrido J.A. Carbon; 161: 647 - 655. 2020. 10.1016/j.carbon.2020.01.066. IF: 8.821

    Poor metal contact interfaces are one of the main limitations preventing unhampered access to the full potential of two-dimensional materials in electronics. Here we present graphene solution-gated field-effect-transistors (gSGFETs) with strongly improved linearity, homogeneity and sensitivity for small sensor sizes, resulting from ultraviolet ozone (UVO) contact treatment. The contribution of channel and contact region to the total device conductivity and flicker noise is explored experimentally and explained with a theoretical model. Finally, in-vitro recordings of flexible microelectrocorticography (μ-ECoG) probes were performed to validate the superior sensitivity of the UVO-treated gSGFET to brain-like activity. These results connote an important step towards the fabrication of high-density gSGFET μ-ECoG arrays with state-of-the-art sensitivity and homogeneity, thus demonstrating the potential of this technology as a versatile platform for the new generation of neural interfaces. © 2020 Elsevier Ltd


  • Multiplexed neural sensor array of graphene solution-gated field-effect transistors

    Schaefer N., Garcia-Cortadella R., Martínez-Aguilar J., Schwesig G., Illa X., Moya Lara A., Santiago S., Hébert C., Guirado G., Villa R., Sirota A., Guimerà-Brunet A., Garrido J.A. 2D Materials; 7 (2, 025046) 2020. 10.1088/2053-1583/ab7976. IF: 7.140

    Electrocorticography (ECoG) is a well-established technique to monitor electrophysiological activity from the surface of the brain and has proved crucial for the current generation of neural prostheses and brain-computer interfaces. However, existing ECoG technologies still fail to provide the resolution necessary to accurately map highly localized activity across large brain areas, due to the rapidly increasing size of connector footprint with sensor count. This work demonstrates the use of a flexible array of graphene solution-gated field-effect transistors (gSGFET), exploring the concept of multiplexed readout using an external switching matrix. This approach does not only allow for an increased sensor count, but due to the use of active sensing devices (i.e. transistors) over microelectrodes it makes additional buffer transistors redundant, which drastically eases the complexity of device fabrication on flexible substrates. The presented results pave the way for upscaling the gSGFET technology towards large-scale, high-density μECoG-arrays, eventually capable of resolving neural activity down to a single neuron level, while simultaneously mapping large brain regions. © 2020 IOP Publishing Ltd.


  • Switchless multiplexing of graphene active sensor arrays for brain mapping

    Garcia-Cortadella R., Schäfer N., Cisneros-Fernandez J., Ré L., Illa X., Schwesig G., Moya A., Santiago S., Guirado G., Villa R., Sirota A., Serra-Graells F., Garrido J.A., Guimerà-Brunet A. Nano Letters; 20 (5): 3528 - 3537. 2020. 10.1021/acs.nanolett.0c00467. IF: 11.238

    Sensor arrays used to detect electrophysiological signals from the brain are paramount in neuroscience. However, the number of sensors that can be interfaced with macroscopic data acquisition systems currently limits their bandwidth. This bottleneck originates in the fact that, typically, sensors are addressed individually, requiring a connection for each of them. Herein, we present the concept of frequency-division multiplexing (FDM) of neural signals by graphene sensors. We demonstrate the high performance of graphene transistors as mixers to perform amplitude modulation (AM) of neural signals in situ, which is used to transmit multiple signals through a shared metal line. This technology eliminates the need for switches, remarkably simplifying the technical complexity of state-of-the-art multiplexed neural probes. Besides, the scalability of FDM graphene neural probes has been thoroughly evaluated and their sensitivity demonstrated in vivo. Using this technology, we envision a new generation of high-count conformal neural probes for high bandwidth brain machine interfaces. © 2020 American Chemical Society.


2019

  • High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors

    Masvidal-Codina E., Illa X., Dasilva M., Calia A.B., Dragojević T., Vidal-Rosas E.E., Prats-Alfonso E., Martínez-Aguilar J., De la Cruz J.M., Garcia-Cortadella R., Godignon P., Rius G., Camassa A., Del Corro E., Bousquet J., Hébert C., Durduran T., Villa R., Sanchez-Vives M.V., Garrido J.A., Guimerà-Brunet A. Nature Materials; 18 (3): 280 - 288. 2019. 10.1038/s41563-018-0249-4. IF: 38.887

    Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.


  • Neural interfaces based on flexible graphene transistors: A new tool for electrophysiology

    Guimera-Brunet A., Masvidal-Codina E., Illa X., Dasilva M., Bonaccini-Calia A., Prats-Alfonso E., Martinez-Aguilar J., De La Cruz J.M., Garcia-Cortadella R., Barbero A., Godignon P., Rius G., Del Corro E., Bousquet J., Hebert C., Wykes R., Sanchez-Vives M.V., Villa R., Schaefer N., Garrido J.A. Technical Digest - International Electron Devices Meeting, IEDM; 2019-December (8993433) 2019. 10.1109/IEDM19573.2019.8993433.

    The use of graphene transistors for transducing neural activity has demonstrated the potential to extend the spatiotemporal resolution of electrophysiological methods to lower frequencies, providing a new tool to understand the role of the infra-slow activity. © 2019 IEEE.


2018

  • Flexible Graphene Solution-Gated Field-Effect Transistors: Efficient Transducers for Micro-Electrocorticography

    Hébert C., Masvidal-Codina E., Suarez-Perez A., Calia A.B., Piret G., Garcia-Cortadella R., Illa X., Del Corro Garcia E., De la Cruz Sanchez J.M., Casals D.V., Prats-Alfonso E., Bousquet J., Godignon P., Yvert B., Villa R., Sanchez-Vives M.V., Guimerà-Brunet A., Garrido J.A. Advanced Functional Materials; 28 (12, 1703976) 2018. 10.1002/adfm.201703976. IF: 13.325

    Brain–computer interfaces and neural prostheses based on the detection of electrocorticography (ECoG) signals are rapidly growing fields of research. Several technologies are currently competing to be the first to reach the market; however, none of them fulfill yet all the requirements of the ideal interface with neurons. Thanks to its biocompatibility, low dimensionality, mechanical flexibility, and electronic properties, graphene is one of the most promising material candidates for neural interfacing. After discussing the operation of graphene solution-gated field-effect transistors (SGFET) and characterizing their performance in saline solution, it is reported here that this technology is suitable for μ-ECoG recordings through studies of spontaneous slow-wave activity, sensory-evoked responses on the visual and auditory cortices, and synchronous activity in a rat model of epilepsy. An in-depth comparison of the signal-to-noise ratio of graphene SGFETs with that of platinum black electrodes confirms that graphene SGFET technology is approaching the performance of state-of-the art neural technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


2016

  • Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks

    Golvano-Escobal I., Gonzalez-Rosillo J.C., Domingo N., Illa X., López-Barberá J.F., Fornell J., Solsona P., Aballe L., Foerster M., Surinãch S., Baró M.D., Puig T., Pané S., Nogués J., Pellicer E., Sort J. Scientific Reports; 6 ( 30398) 2016. 10.1038/srep30398. IF: 5.228

    Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.