Staff directory Jordi Piella Bagaria

Jordi Piella Bagaria

Doctoral Student
Inorganic Nanoparticles



  • Characterization of nanoparticle batch-to-batch variability

    Mülhopt S., Diabaté S., Dilger M., Adelhelm C., Anderlohr C., Bergfeldt T., de la Torre J.G., Jiang Y., Valsami-Jones E., Langevin D., Lynch I., Mahon E., Nelissen I., Piella J., Puntes V., Ray S., Schneider R., Wilkins T., Weiss C., Paur H.-R. Nanomaterials; 8 (5, 311) 2018. 10.3390/nano8050311.

    A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.

  • Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis

    Russo L., Merkoçi F., Patarroyo J., Piella J., Merkoçi A., Bastús N.G., Puntes V. Chemistry of Materials; 30 (15): 5098 - 5107. 2018. 10.1021/acs.chemmater.8b01488.

    The rational design of advanced nanomaterials with enhanced optical properties can be reached only with the profound thermodynamic and kinetic understanding of their synthetic processes. In this work, the synthesis of monodisperse AuAg nanoshells with thin shells and large voids is achieved through the development of a highly reproducible and robust methodology based on the galvanic replacement reaction. This is obtained thanks to the systematic identification of the role played by the different synthetic parameters involved in the process (such as surfactants, co-oxidizers, complexing agents, time, and temperature), providing an unprecedented control over the material's morphological and optical properties. Thus, the time- and size-resolved evolution of AuAg nanoshells surface plasmon resonance band is described for 15, 30, 60, 80, 100, and 150 nm-sized particles spanning almost through the entire visible spectrum. Its analysis reveals a four-phase mechanism coherent with the material's morphological transformation. Simulations based on Mie's theory confirm the observed optical behavior in AuAg nanoshells formation and provide insights into the influence of the Au/Ag ratio on their plasmonic properties. The high degree of morphological control provided by this methodology represents a transferable and scalable strategy for the development of advanced-generation plasmonic nanomaterials. © 2018 American Chemical Society.


  • Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System

    Barbero F., Russo L., Vitali M., Piella J., Salvo I., Borrajo M.L., Busquets-Fité M., Grandori R., Bastús N.G., Casals E., Puntes V. Seminars in Immunology; 34: 52 - 60. 2017. 10.1016/j.smim.2017.10.001. IF: 9.611

    The interaction of inorganic nanoparticles and many biological fluids often withstands the formation of a Protein Corona enveloping the nanoparticle. This Protein Corona provides the biological identity to the nanoparticle that the immune system will detect. The formation of this Protein Corona depends not only on the composition of the nanoparticle, its size, shape, surface state and exposure time, but also on the type of media, nanoparticle to protein ratio and the presence of ions and other molecular species that interfere in the interaction between proteins and nanoparticles. This has important implications on immune safety, biocompatibility and the use of nanoparticles in medicine. © 2017 Elsevier Ltd

  • Intrinsic and extrinsic properties affecting innate immune responses to nanoparticles: The case of cerium oxide

    Casals E., Gusta M.F., Piella J., Casals G., Jiménez W., Puntes V. Frontiers in Immunology; 8 (AUG, 970) 2017. 10.3389/fimmu.2017.00970. IF: 6.429

    We review the apparent discrepancies between studies that report anti-inflammatory effects of cerium oxide nanoparticles (CeO2 NPs) through their reactive oxygen specieschelating properties and immunological studies highlighting their toxicity. We observe that several underappreciated parameters, such as aggregation size and degree of impurity, are critical determinants that need to be carefully addressed to better understand the NP biological effects in order to unleash their potential clinical benefits. This is because NPs can evolve toward different states, depending on the environment where they have been dispersed and how they have been dispersed. As a consequence, final characteristics of NPs can be very different from what was initially designed and produced in the laboratory. Thus, aggregation, corrosion, and interaction with extracellular matrix proteins critically modify NP features and fate. These modifications depend to a large extent on the characteristics of the biological media in which the NPs are dispersed. As a consequence, when reviewing the scientific literature, it seems that the aggregation state of NPs, which depends on the characteristics of the dispersing media, may be more significant than the composition or original size of the NPs. In this work, we focus on CeO2 NPs, which are reported sometimes to be protective and anti-inflammatory, and sometimes toxic and pro-inflammatory. © 2017 Casals, Gusta, Piella, Casals, Jiménez and Puntes.

  • Modeling the Optical Responses of Noble Metal Nanoparticles Subjected to Physicochemical Transformations in Physiological Environments: Aggregation, Dissolution and Oxidation

    Piella J., Bastús N.G., Puntes V. Zeitschrift fur Physikalische Chemie; 231 (1): 33 - 50. 2017. 10.1515/zpch-2016-0874. IF: 1.012

    Herein, we study how optical properties of colloidal dispersions of noble metal nanoparticles (Au and Ag) are affected by processes such as aggregation and oxidative dissolution. The optical contributions of these processes to the extinction spectra in the UV-vis region are often overlapped, making difficult its interpretation. In this regard, modeling the UV-vis spectra (in particular absorbance curve, peaks position, intensity and full width at half maximum-FWHM) of each process separately offers a powerful tool to identify the transformation of NPs under relevant and complex scenarios, such as in biological media. The proper identification of these transformations is crucial to understand the biological effects of the NPs. © 2017 Walter de Gruyter GmbH, Berlin/Boston.

  • One-Pot Synthesis of Cationic Gold Nanoparticles by Differential Reduction

    Sperling R.A., Garciá-Fernández L., Ojea-Jiménez I., Piella J., Bastús N.G., Puntes V. Zeitschrift fur Physikalische Chemie; 231 (1): 7 - 18. 2017. 10.1515/zpch-2016-0864. IF: 1.012

    The size-controlled synthesis of cationic particles by differential reduction of HAuCl4 precursor in the presence of NaBH4 and 1-aminoundecane-12-thiol (AUT) is reported. The number of seed particles is determined by the fraction of the initially Au precursor reduced by NaBH4 present in the reaction mixture, which are then grown larger by the AUT, acting as both weak reducing agent and stabilizing surfactant. By this methodology, size controlled synthesis is achieved in a two-step one-pot synthesis at room temperature. © 2017 Walter de Gruyter GmbH, Berlin/Boston.

  • Probing the surface reactivity of nanocrystals by the catalytic degradation of organic dyes: The effect of size, surface chemistry and composition

    Piella J., Merkoçi F., Genç A., Arbiol J., Bastús N.G., Puntes V. Journal of Materials Chemistry A; 5 (23): 11917 - 11929. 2017. 10.1039/c7ta01328k. IF: 8.867

    We herein present a comprehensive study on how the catalytic performance and reusability of Au nanocrystals (NCs) are affected by systematic variations of crystal size, surface coating and composition. The reductions of different organic dyes (4-nitrophenol, rhodamine B and methylene blue) by borohydride ions were used as model catalytic reactions. The catalytic performance of the Au NCs ranged between 3.6 to 110 nm was found to be dependent on crystal size, indicating that Au surface atoms have a distinct size-dependent reactivity in this reaction. Similarly, the catalytic performance was found to be strongly dependent on the nature of the coating molecule, obtaining lower catalytic activities for molecules strongly bound to the Au surface. Finally, the catalytic performance was found to be dependent on the chemical composition of the NC (Au, Ag, Pt) and the model dye used as a testing system, with the highest degradation rate found for methylene blue, followed by 4-nitrophenol and rhodamine B. We believe that this study provides a better understanding of the catalytic performance of Au NCs upon controlled modifications of the structural and morphological parameters, and a working environment that can be used to facilitate the selection of the optimum NC size, coating molecule and evaluation system for a particular study of interest. © 2017 The Royal Society of Chemistry.

  • Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona

    Piella J., Bastús N.G., Puntes V. Bioconjugate chemistry; 28 (1): 88 - 97. 2017. 10.1021/acs.bioconjchem.6b00575. IF: 4.818

    Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.


  • Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles

    Kenesei K., Murali K., Czéh Á., Piella J., Puntes V., Madarász E. Journal of Nanobiotechnology; 14 (1, 55) 2016. 10.1186/s12951-016-0210-0. IF: 4.239

    Background: Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-type-specific distribution of fluorescent polystyrene nanoparticles with chemically distinct surface compositions. Methods: Fluorescent polystyrene nanoparticles with 50-90 nm diameter and with carboxylated- or polyethylene glycol-modified (PEGylated) surfaces were delivered into adult male and pregnant female mice with a single intravenous injection. The precise anatomical distribution of the particles was investigated by confocal microscopy after a short-term (5 min) or long-term (4 days) distribution period. In order to distinguish particle-fluorescence from tissue autofluorescence and to enhance the detection-efficiency, fluorescence spectral detection was applied during image acquisition and a post hoc full spectrum analysis was performed on the final images. Results: Spectral imaging fluorescence microscopy allowed distinguishing particle-fluorescence from tissue-fluorescence in all examined organs (brain, kidney, liver, spleen and placenta) in NP-treated slice preparations. In short-time distribution following in vivo NP-administration, all organs contained carboxylated-nanoparticles, while PEGylated-nanoparticles were not detected in the brain and the placenta. Importantly, nanoparticles were not found in any embryonic tissues or in the barrier-protected brain parenchyma. Four days after the administration, particles were completely cleared from both the brain and the placenta, while PEGylated-, but not carboxylated-nanoparticles, were stuck in the kidney glomerular interstitium. In the spleen, macrophages accumulated large amount of carboxylated and PEGylated nanoparticles, with detectable redistribution from the marginal zone to the white pulp during the 4-day survival period. Conclusions: Spectral imaging fluorescence microscopy allowed detecting the tissue- and cell-type-specific accumulation and barrier-penetration of polystyrene nanoparticles with equal size but chemically distinct surfaces. The data revealed that polystyrene nanoparticles are retained by the reticuloendothelial system regardless of surface functionalization. Taken together with the increasing production and use of nanoparticles, the results highlight the necessity of long-term distribution studies to estimate the potential health-risks implanted by tissue-specific nanoparticle accumulation and clearance. © 2016 The Author(s).

  • Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation

    Deville S., Baré B., Piella J., Tirez K., Hoet P., Monopoli M.P., Dawson K.A., Puntes V.F., Nelissen I. Nanotoxicology; 10 (10): 1395 - 1403. 2016. 10.1080/17435390.2016.1221476. IF: 7.913

    Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO4) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observed cell activation pattern indicated a competitive rather than an additive effect of both inducers with levels similar to those induced by NiSO4 alone. Quantification of the GNP uptake by DCs demonstrated a significant decrease in intracellular gold content during co-incubation with NiSO4. An extensive physiochemical characterization was performed to determine the interaction between GNPs and NiSO4 in the complex physiological media using nanoparticle tracking analyses, disc centrifugation, UV–visible spectroscopy, ICP-MS analyses, zeta potential measurements, electron microscopy, and proteomics. Although GNPs and NiSO4 did not directly interact with each other, the presence of NiSO4 in the physiological media resulted in changes in GNPs' charge and their associated protein corona (content and composition), which may contribute to a decreased cellular uptake of GNPs and sustaining the nickel-induced DC maturation. The presented results provide new insights in the interaction of heavy metals and NPs in complex physiological media. Moreover, this study highlights the necessity of mixture toxicology, since these combined exposures are highly relevant for human subjection to NPs and risk assessment of nanomaterials. © 2016 Informa UK Limited, trading as Taylor & Francis Group.

  • Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil

    Makama S., Piella J., Undas A., Dimmers W.J., Peters R., Puntes V.F., van den Brink N.W. Environmental Pollution; 218: 870 - 878. 2016. 10.1016/j.envpol.2016.08.016. IF: 4.839

    Physicochemical properties of nanoparticles influence their environmental fate and toxicity, and studies investigating this are vital for a holistic approach towards a comprehensive and adequate environmental risk assessment. In this study, we investigated the effects of size, surface coating (charge) of silver nanoparticles (AgNPs) – a most commonly-used nanoparticle-type, on the bioaccumulation in, and toxicity (survival, growth, cocoon production) to the earthworm Lumbricus rubellus. AgNPs were synthesized in three sizes: 20, 35 and 50 nm. Surface-coating with bovine serum albumin (AgNP_BSA), chitosan (AgNP_Chit), or polyvinylpyrrolidone (AgNP_PVP) produced negative, positive and neutral particles respectively. In a 28-day sub-chronic reproduction toxicity test, earthworms were exposed to these AgNPs in soil (0–250 mg Ag/kg soil DW). Earthworms were also exposed to AgNO3 at concentrations below known EC50. Total Ag tissue concentration indicated uptake by earthworms was generally highest for the AgNP_BSA especially at the lower exposure concentration ranges, and seems to reach a plateau level between 50 and 100 mg Ag/kg soil DW. Reproduction was impaired at high concentrations of all AgNPs tested, with AgNP_BSA particles being the most toxic. The EC50 for the 20 nm AgNP_BSA was 66.8 mg Ag/kg soil, with exposure to <60 mg Ag/kg soil already showing a decrease in the cocoon production. Thus, based on reproductive toxicity, the particles ranked: AgNP_BSA (negative) > AgNP_PVP (neutral) > Chitosan (positive). Size had an influence on uptake and toxicity of the AgNP_PVP, but not for AgNP_BSA nor AgNP_Chit. This study provides essential information on the role of physicochemical properties of AgNPs in influencing uptake by a terrestrial organism L. rubellus under environmentally relevant conditions. It also provides evidence of the influence of surface coating (charge) and the limited effect of size in the range of 20–50 nm, in driving uptake and toxicity of the AgNPs tested. © 2016 Elsevier Ltd

  • Quantifying the Sensitivity of Multipolar (Dipolar, Quadrupolar, and Octapolar) Surface Plasmon Resonances in Silver Nanoparticles: The Effect of Size, Composition, and Surface Coating

    Bastús N.G., Piella J., Puntes V. Langmuir; 32 (1): 290 - 300. 2016. 10.1021/acs.langmuir.5b03859. IF: 3.993

    The effect of composition, size, and surface coating on the sensitivity of localized multipolar surface plasmon resonances has been spectroscopically investigated in high-quality silver colloidal solutions with precisely controlled sizes from 10 to 220 nm and well-defined surface chemistry. Surface plasmon resonance modes have been intensively characterized, identifying the size-dependence of dipolar, quadrupolar, and octapolar modes. Modifications of the NP's surface chemistry revealed the higher sensitivity of large sizes, long molecules, thiol groups, and low-order resonance modes. We also extend this study to gold nanoparticles, aiming to compare the sensitivity of both materials, quantifying the higher sensitivity of silver. © 2015 American Chemical Society.

  • Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties.

    Piella J., Bastús N.G., Puntes V. Chemistry of Materials; 28 (4): 1066 - 1075. 2016. 10.1021/acs.chemmater.5b04406. IF: 9.407

    Highly monodisperse, biocompatible and functionalizable sub-10-nm citrate-stabilized gold nanoparticles (Au NPs) have been synthesized following a kinetically controlled seeded-growth strategy. The use of traces of tannic acid together with an excess of sodium citrate during nucleation is fundamental in the formation of a high number (7 × 1013 NPs/mL) of small ∼3.5 nm Au seeds with a very narrow distribution. A homogeneous nanometric growth of these seeds is then achieved by adjusting the reaction parameters: pH, temperature, sodium citrate concentration and gold precursor to seed ratio. We use this method to produce Au NPs with a precise control over their sizes between 3.5 and 10 nm and a versatile surface chemistry allowing studying the size-dependent optical properties in this transition size regime lying between clusters and nanoparticles. Interestingly, an inflection point is observed for Au NPs smaller than 8 nm in which the sensitivity of the localized surface plasmon resonance (LSPR) peak position as a function of NPs size and surface modifications dramatically increase. These studies are relevant in the design of the final selectivity, activity and compatibility of Au NPs, especially in those (bio)applications where size is a critical parameter (e.g., biodistribution, multiplex labeling, and protein interaction). © 2016 American Chemical Society.


  • Exploring new synthetic strategies for the production of advanced complex inorganic nanocrystals

    Bastús N.G., Gonzalez E., Esteve J., Piella J., Patarroyo J., Merkoçi F., Puntes V. Zeitschrift fur Physikalische Chemie; 229 (1-2): 65 - 83. 2015. 10.1515/zpch-2014-0611. IF: 1.356

    The design of new protocols for the colloidal synthesis of complex nanocrystals (NCs) with advanced functionalities, comprising both hybrid and hollow structures, and the study of their fundamental properties is of paramount importance for the development of a new generation of nanostructured materials. The possibility of tailoring the dimensional regime of NCs, along with its composition and structure, represents a landmark achievement in the control of their unique physico-chemical properties. These properties, alongside with the ability to cheaply produce high quality NCs in fairly large amounts by wet-chemistry techniques, leads to their potential applicability from materials science to nanomedicine. Within this context, this review is focused on describing a successful framework for designing synthetic strategies for the production of advanced complex NCs, integrating the development of new synthetic methods with its structural characterization, monitoring of their properties, and study of its reactivity. As a result, it is expected to provide new routes to produce robust and easy-to-process NCs in a wide range of sizes, shapes and configurations that can be explored to achieve the combination of all degrees of control, aiming to produce a complete and diverse library of material combinations that will expand its applicability in a wide diversity of fields. © 2014 Walter de Gruyter Berlin/Boston.


  • Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties

    Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes, V. Chemistry of Materials; 26 (9): 2836 - 2846. 2014. 10.1021/cm500316k. IF: 8.535


  • Characterizing Nanoparticles Reactivity: Structure-Photocatalytic Activity Relationship

    Piella, J.; Bastús, N. G.; Casals, E.; Puntes, V. Journal of Physics: Conference Series; 429: 1. 2013. 10.1088/1742-6596/429/1/012040. IF: 0.000

  • Stability of polymer encapsulated quantum dots in cell culture media

    Ojea-Jiménez, I.; Piella, J.; Nguyen, T. L.; Bestetti, A.; Ryan, A. D.; Puntes, V. Journal of Physics: Conference Series; 429: 3. 2013. 10.1088/1742-6596/429/1/012009. IF: 0.000