Staff directory Cristina López Cabezón

Cristina López Cabezón

Visiting Degree Student
Advanced Electronic Materials and Devices



  • Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling

    Whitworth G.L., Jaramillo-Fernandez J., Pariente J.A., Garcia P.D., Blanco A., Lopez C., Sotomayor-Torres C.M. Optics Express; 29 (11): 16857 - 16866. 2021. 10.1364/OE.420989. IF: 3.894

    Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance atwavelengths in the atmospheric infrared transparency window (8-13 ìm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 ìm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides. © 2021 Optical Society of America.


  • A Self-Assembled 2D Thermofunctional Material for Radiative Cooling

    Jaramillo-Fernandez J., Whitworth G.L., Pariente J.A., Blanco A., Garcia P.D., Lopez C., Sotomayor-Torres C.M. Small; 15 (52, 1905290) 2019. 10.1002/smll.201905290. IF: 10.856

    The regulation of temperature is a major energy-consuming process of humankind. Today, around 15% of the global-energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback-loop. Here, an inexpensive solution is proposed to this challenge based on a single layer of silica microspheres self-assembled on a soda-lime glass. This 2D crystal acts as a visibly translucent thermal-blackbody for above-ambient radiative cooling and can be used to improve the thermal performance of devices that undergo critical heating during operation. The temperature of a silicon wafer is found to be 14 K lower during daytime when covered with the thermal emitter, reaching an average temperature difference of 19 K when the structure is backed with a silver layer. In comparison, the soda-lime glass reference used in the measurements lowers the temperature of the silicon by just 5 K. The cooling power of this simple radiative cooler under direct sunlight is found to be 350 W m−2 when applied to hot surfaces with relative temperatures of 50 K above the ambient. This is crucial to radiatively cool down devices, i.e., solar cells, where an increase in temperature has drastic effects on performance. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Template-Free, Surfactant-Mediated Orientation of Self-Assembled Supercrystals of Metal–Organic Framework Particles

    Avci C., Liu Y., Pariente J.A., Blanco A., Lopez C., Imaz I., Maspoch D. Small; 15 (31, 1902520) 2019. 10.1002/smll.201902520. IF: 10.856

    Mesoscale self-assembly of particles into supercrystals is important for the design of functional materials such as photonic and plasmonic crystals. However, while much progress has been made in self-assembling supercrystals adopting diverse lattices and using different types of particles, controlling their growth orientation on surfaces has received limited success. Most of the latter orientation control has been achieved via templating methods in which lithographic processes are used to form a patterned surface that acts as a template for particle assembly. Herein, a template-free method to self-assemble (111)-, (100)-, and (110)-oriented face-centered cubic supercrystals of the metal–organic framework ZIF-8 particles by adjusting the amount of surfactant (cetyltrimethylammonium bromide) used is described. It is shown that these supercrystals behave as photonic crystals whose properties depend on their growth orientation. This control on the orientation of the supercrystals dictates the orientation of the composing porous particles that might ultimately facilitate pore orientation on surfaces for designing membranes and sensors. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


  • Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures

    Avci C., Imaz I., Carné-Sánchez A., Pariente J.A., Tasios N., Pérez-Carvajal J., Alonso M.I., Blanco A., Dijkstra M., López C., Maspoch D. Nature Chemistry; 10 (1): 78 - 84. 2018. 10.1038/NCHEM.2875. IF: 26.201

    Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing. © 2017 Macmillan Publishers Limited, part of Springer Nature.