Staff directory Gerard Boix i Soler



  • MOF-Beads Containing Inorganic Nanoparticles for the Simultaneous Removal of Multiple Heavy Metals from Water

    Boix G., Troyano J., Garzón-Tovar L., Camur C., Bermejo N., Yazdi A., Piella J., Bastus N.G., Puntes V.F., Imaz I., Maspoch D. ACS Applied Materials and Interfaces; 12 (9): 10554 - 10562. 2020. 10.1021/acsami.9b23206. IF: 8.456

    Pollution of water with heavy metals is a global environmental problem whose impact is especially severe in developing countries. Among water-purification methods, adsorption of heavy metals has proven to be simple, versatile, and cost-effective. However, there is still a need to develop adsorbents with a capacity to remove multiple metal pollutants from the same water sample. Herein, we report the complementary adsorption capacities of metal-organic frameworks (here, UiO-66 and UiO-66-(SH)2) and inorganic nanoparticles (iNPs; here, cerium-oxide NPs) into composite materials. These adsorbents, which are spherical microbeads generated in one step by continuous-flow spray-drying, efficiently and simultaneously remove multiple heavy metals from water, including As(III and V), Cd(II), Cr(III and VI), Cu(II), Pb(II), and Hg(II). We further show that these microbeads can be used as a packing material in a prototype of a continuous-flow water treatment system, in which they retain their metal-removal capacities upon regeneration with a gentle acidic treatment. As proof-of-concept, we evaluated these adsorbents for purification of laboratory water samples prepared to independently recapitulate each of two strongly polluted rivers: the Bone (Indonesia) and Buringanga (Bangladesh) rivers. In both cases, our microbeads reduced the levels of all the metal contaminants to below the corresponding permissible limits established by the World Health Organization (WHO). Moreover, we demonstrated the capacity of these microbeads to lower levels of Cr(VI) in a water sample collected from the Sarno River (Italy). Finally, to create adsorbents that could be magnetically recovered following their use in water purification, we extended our spray-drying technique to simultaneously incorporate two types of iNPs (CeO2 and Fe3O4) into UiO-66-(SH)2, obtaining CeO2/Fe3O4@UiO-66-(SH)2 microbeads that adsorb heavy metals and are magnetically responsive. Copyright © 2020 American Chemical Society.


  • The Imine-Based COF TpPa-1 as an Efficient Cooling Adsorbent That Can Be Regenerated by Heat or Light

    Pérez-Carvajal J., Boix G., Imaz I., Maspoch D. Advanced Energy Materials; 9 (39, 1901535) 2019. 10.1002/aenm.201901535. IF: 24.884

    Adsorption-based cooling systems, which can be driven by waste heat and solar energy, are promising alternatives to conventional, compression-based cooling systems, as they demand less energy and emit less CO2. The performance of adsorption-based cooling systems relates directly to the performance of the working pairs (sorbent–water). Accordingly, improvement of these systems relies on the continual discovery of new sorbents that enable greater mass exchange while requiring less energy for regeneration. Here, it is proposed that covalent-organic frameworks (COFs) can replace traditional sorbents for adsorption-based cooling. In tests mimicking standard operating conditions for industry, the imine-based COF TpPa-1 exhibits a regeneration temperature below 65 °C and a cooling coefficient of performance of 0.77 – values which are comparable to those reported for the best metal–organic framework sorbents described to date. Moreover, TpPa-1 exhibits a photothermal effect and can be regenerated by visible light, thereby opening the possibility for its use in solar-driven cooling. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


  • The photothermal effect in MOFs: Covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions

    Espín J., Garzón-Tovar L., Boix G., Imaz I., Maspoch D. Chemical Communications; 54 (33): 4184 - 4187. 2018. 10.1039/c8cc01593g. IF: 6.290

    Here, we report the covalent post-synthetic modification (CPSM) of MOFs using the photothermal effect. Specifically, we subjected mixtures of a photothermally active MOF and another reagent to irradiation with a UV-Vis lamp. This caused the MOF to heat up, which in turn caused the other reagent to melt and subsequently react with the functional groups on the walls of the MOF pores. We have exploited this dual function of MOFs as both heater and host for CPSMs to achieve rapid formation of amides from the reaction of representative MOFs (UiO-66-NH2 or MIL-101-NH2-(Al)) with anhydrides under solvent-free conditions. In addition, this approach enables more complex CPSMs in MOFs such as the formation of amides in UiO-66-NH2 by using an aldehyde through a cascade reaction. © 2018 The Royal Society of Chemistry.


  • Tuning the Endocytosis Mechanism of Zr-Based Metal-Organic Frameworks through Linker Functionalization

    Orellana-Tavra C., Haddad S., Marshall R.J., Abánades Lázaro I., Boix G., Imaz I., Maspoch D., Forgan R.S., Fairen-Jimenez D. ACS Applied Materials and Interfaces; 9 (41): 35516 - 35525. 2017. 10.1021/acsami.7b07342. IF: 7.504

    A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4′-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs. © 2017 American Chemical Society.