Staff directory Gerard Boix i Soler

Publications

2018

  • The photothermal effect in MOFs: Covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions

    Espín J., Garzón-Tovar L., Boix G., Imaz I., Maspoch D. Chemical Communications; 54 (33): 4184 - 4187. 2018. 10.1039/c8cc01593g.

    Here, we report the covalent post-synthetic modification (CPSM) of MOFs using the photothermal effect. Specifically, we subjected mixtures of a photothermally active MOF and another reagent to irradiation with a UV-Vis lamp. This caused the MOF to heat up, which in turn caused the other reagent to melt and subsequently react with the functional groups on the walls of the MOF pores. We have exploited this dual function of MOFs as both heater and host for CPSMs to achieve rapid formation of amides from the reaction of representative MOFs (UiO-66-NH2 or MIL-101-NH2-(Al)) with anhydrides under solvent-free conditions. In addition, this approach enables more complex CPSMs in MOFs such as the formation of amides in UiO-66-NH2 by using an aldehyde through a cascade reaction. © 2018 The Royal Society of Chemistry.


2017

  • Tuning the Endocytosis Mechanism of Zr-Based Metal-Organic Frameworks through Linker Functionalization

    Orellana-Tavra C., Haddad S., Marshall R.J., Abánades Lázaro I., Boix G., Imaz I., Maspoch D., Forgan R.S., Fairen-Jimenez D. ACS Applied Materials and Interfaces; 9 (41): 35516 - 35525. 2017. 10.1021/acsami.7b07342. IF: 7.504

    A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4′-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs. © 2017 American Chemical Society.