Staff directory Jeremie Maire

Publications

2019

  • Synchronization of Optomechanical Nanobeams by Mechanical Interaction

    Colombano M.F., Arregui G., Capuj N.E., Pitanti A., Maire J., Griol A., Garrido B., Martinez A., Sotomayor-Torres C.M., Navarro-Urrios D. Physical Review Letters; 123 (1, 017402) 2019. 10.1103/PhysRevLett.123.017402. IF: 9.227

    The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic examples, but synchronizing their nanoscaled versions is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that, in contrast to previous works performed in similar objects, are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in antiphase, which is in agreement with the predictions of our numerical model that considers reactive coupling. We also show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and pave the way towards realizing integrated networks of synchronized mechanical oscillators. © 2019 American Physical Society.


2018

  • Mechanisms behind the enhancement of thermal properties of graphene nanofluids

    Rodríguez-Laguna M.R., Castro-Alvarez A., Sledzinska M., Maire J., Costanzo F., Ensing B., Pruneda M., Ordejón P., Sotomayor Torres C.M., Gómez-Romero P., Chávez-Ángel E. Nanoscale; 10 (32): 15402 - 15409. 2018. 10.1039/c8nr02762e. IF: 7.233

    While the dispersion of nanomaterials is known to be effective in enhancing the thermal conductivity and specific heat capacity of fluids, the mechanisms behind this enhancement remain to be elucidated. Herein, we report on highly stable, surfactant-free graphene nanofluids, based on N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF), with enhanced thermal properties. An increase of up to 48% in thermal conductivity and 18% in specific heat capacity was measured. The blue shift of several Raman bands with increasing graphene concentration in DMF indicates that there is a modification in the vibrational energy of the bonds associated with these modes, affecting all the molecules in the liquid. This result indicates that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. Density functional theory and molecular dynamics simulations were used to gather data on the interaction between graphene and solvent, and to investigate a possible order induced by graphene on the solvent. The simulations showed a parallel orientation of DMF towards graphene, favoring π-π stacking. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the fluid's thermal properties. © The Royal Society of Chemistry.


  • Nanocrystalline silicon optomechanical cavities

    Navarro-Urrios D., Capuj N.E., Maire J., Colombano M., Jaramillo-Fernandez J., Chavez-Angel E., Martin L.L., Mercadé L., Griol A., Martínez A., Sotomayor-Torres C.M., Ahopelto J. Optics Express; 26 (8): 9829 - 9839. 2018. 10.1364/OE.26.009829. IF: 3.356

    Silicon on insulator photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, there are some constraints such as the high cost of the wafers and limitation to a single physical device level. In the present work we investigate nanocrystalline silicon as an alternative material for optomechanical devices. In particular, we demonstrate that optomechanical crystal cavities fabricated of nanocrystalline silicon have optical and mechanical properties enabling non-linear dynamical behaviour and effects such as thermo-optic/free-carrier-dispersion self-pulsing, phonon lasing and chaos, all at low input laser power and with typical frequencies as high as 0.3 GHz. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.


  • Optical modulation of coherent phonon emission in optomechanical cavities

    Maire J., Arregui G., Capuj N.E., Colombano M.F., Griol A., Martinez A., Sotomayor-Torres C.M., Navarro-Urrios D. APL Photonics; 3 (12, 126102) 2018. 10.1063/1.5040061. IF: 0.000

    Optomechanical (OM) structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by phonons, OM structures could be used as interfaces to photons and electrons thanks to their excellent coupling efficiency. Among the components required for phononic circuits, such structures could be used to create coherent phonon sources and detectors, but more complex functions remain challenging. Here, we propose and demonstrate a way to modulate the coherent phonon emission from OM crystals by a photothermal effect induced by an external laser, effectively creating a phonon switch working at ambient conditions of pressure and temperature and the working speed of which is only limited by the build-up time of the mechanical motion of the OM structure. We additionally demonstrate two other modulation schemes: modulation of harmonics in which the mechanical mode remains active but different harmonics of the optical force are used, and modulation to and from a chaotic regime. Furthermore, due to the local nature of the photothermal effect used here, we expect this method to allow us to selectively modulate the emission of any single cavity on a chip without affecting its surroundings in the absence of mechanical coupling between the structures, which is an important step toward freely controllable networks of OM phonon emitters. © 2018 Author(s).