Staff directory Arsalan Akhtar



  • Dynamic control of octahedral rotation in perovskites by defect engineering

    Jia J., He X., Akhtar A., Herranz G., Pruneda M. Physical Review B; 105 (22, 224112) 2022. 10.1103/PhysRevB.105.224112.

    Engineering oxygen octahedra rotation patterns in ABO3 perovskites is a powerful route to design functional materials. Here we propose a strategy that exploits point defects that create local electric dipoles and couple to the oxygen sublattice, enabling direct actuation on the rotational degrees of freedom. This approach, which relies on substituting an A site with a smaller ion, paves a way to couple dynamically octahedra rotations to external electric fields. A common antisite defect, AlLa, in rhombohedral LaAlO3 is taken as a prototype to validate the idea, with atomistic density functional theory calculations supported with an effective lattice model to simulate the dynamics of switching of the local rotational degrees of freedom to long distances. Our simulations provide an insight of the main parameters that govern the operation of the proposed mechanism, and allow to define guidelines for screening other systems where this approach could be used for tuning the properties of the host material. © 2022 American Physical Society.


  • Siesta: Recent developments and applications

    García A., Papior N., Akhtar A., Artacho E., Blum V., Bosoni E., Brandimarte P., Brandbyge M., Cerdá J.I., Corsetti F., Cuadrado R., Dikan V., Ferrer J., Gale J., García-Fernández P., García-Suárez V.M., García S., Huhs G., Illera S., Korytár R., Koval P., Lebedeva I., Lin L., López-Tarifa P., Mayo S.G., Mohr S., Ordejón P., Postnikov A., Pouillon Y., Pruneda M., Robles R., Sánchez-Portal D., Soler J.M., Ullah R., Yu V.W.-Z., Junquera J. The Journal of chemical physics; 152 (20): 204108. 2020. 10.1063/5.0005077. IF: 2.991

    A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.