Staff directory Kostas Kostarelos

Kostas Kostarelos

Senior Group Leader
kostas.kostarelos(ELIMINAR)@icn2.cat
Nanomedicine

Publications

2021

  • Adenoviral Mediated Delivery of OSKM Factors Induces Partial Reprogramming of Mouse Cardiac Cells In Vivo

    Kisby T., de Lázaro I., Fisch S., Cartwright E.J., Cossu G., Kostarelos K. Advanced Therapeutics; 4 (2, 2000141) 2021. 10.1002/adtp.202000141. IF: 0.000

    The induction of in vivo reprogramming toward pluripotency has been demonstrated in several tissues utilizing either transgenic inducible mice or gene delivery approaches. However, the effects of exogenous reprogramming factor expression in the mammalian heart have not been previously reported. The present study aims to investigate the response of cardiac cells to ectopic Oct3/4, Sox2, Klf4, and cMyc (OSKM) expression in vivo using a non-integrating adenoviral vector. Direct intramyocardial injection of this vector achieves effective and transient OSKM overexpression in the healthy heart and after myocardial infarction. The expression of these factors induces transient upregulation of a number of endogenous pluripotency (endo-Oct3/4, Gdf3) and reprogramming related (Cdh1, Fut4) genes, confirming the induction of cell reprogramming. Despite the initiation of reprogramming, markers of fully de-differentiated cells including Nanog remain silenced, consistent with a partially reprogrammed state. Furthermore, no indications of tumorigenesis or teratoma formation are observed. Overall, these data suggest that adenoviral mediated OSKM delivery can be utilized to induce partial in vivo reprogramming. However, the absence of any clear regenerative effects after myocardial infarction indicates that further optimization of vector mediated reprogramming strategies is essential to overcome barriers to therapeutic efficacy. © 2020 The Authors. Advanced Therapeutics published by Wiley-VCH GmbH


  • Deep Tissue Translocation of Graphene Oxide Sheets in Human Glioblastoma 3D Spheroids and an Orthotopic Xenograft Model

    de Lázaro I., Sharp P., Gurcan C., Ceylan A., Stylianou M., Kisby T., Chen Y., Vranic S., Barr K., Taheri H., Ozen A., Bussy C., Yilmazer A., Kostarelos K. Advanced Therapeutics; 4 (1, 2000109) 2021. 10.1002/adtp.202000109. IF: 0.000

    Its anatomical localization, a highly heterogeneous and drug-resistant tumor cell population and a “cold” immune microenvironment, all challenge the treatment of glioblastoma. Nanoscale drug delivery systems, including graphene oxide (GO) flakes, may circumvent some of these issues bypassing biological barriers, delivering multiple cargoes to impact several pathways simultaneously, or targeting the immune compartment. Here, the interactions of GO flakes with in vitro (U-87 MG three-dimensional spheroids, without stromal or immune compartments) and in vivo (U-87 MG orthotopic xenograft) models of glioblastoma are investigated. In vitro, GO flakes translocated deeply into the spheroids with little internalization in tumor cells. In vivo, intracranially administered GO also show extensive distribution throughout the tumor and demonstrate no impact on tumor growth and progression for the duration of the study. Internalization within tumor cells is also scarce, with the majority of flakes preferentially taken up by microglia/macrophages. The results indicate that GO flakes could offer deep and homogenous distribution throughout glioblastoma tumors and a means to target their myeloid compartment. Further studies are warranted to investigate the mechanisms of GO flakes transport within the tumor mass and their capacity to deliver bioactive cargoes but, ultimately, this information could inform the development of immunotherapies against glioblastoma. © 2020 The Authors. Published by Wiley-VCH GmbH


  • Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity

    Garcia-Cortadella R., Schwesig G., Jeschke C., Illa X., Gray A.L., Savage S., Stamatidou E., Schiessl I., Masvidal-Codina E., Kostarelos K., Guimerà-Brunet A., Sirota A., Garrido J.A. Nature Communications; 12 (1, 211) 2021. 10.1038/s41467-020-20546-w. IF: 12.121

    Graphene active sensors have demonstrated promising capabilities for the detection of electrophysiological signals in the brain. Their functional properties, together with their flexibility as well as their expected stability and biocompatibility have raised them as a promising building block for large-scale sensing neural interfaces. However, in order to provide reliable tools for neuroscience and biomedical engineering applications, the maturity of this technology must be thoroughly studied. Here, we evaluate the performance of 64-channel graphene sensor arrays in terms of homogeneity, sensitivity and stability using a wireless, quasi-commercial headstage and demonstrate the biocompatibility of epicortical graphene chronic implants. Furthermore, to illustrate the potential of the technology to detect cortical signals from infra-slow to high-gamma frequency bands, we perform proof-of-concept long-term wireless recording in a freely behaving rodent. Our work demonstrates the maturity of the graphene-based technology, which represents a promising candidate for chronic, wide frequency band neural sensing interfaces. © 2021, The Author(s).


  • Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats

    Franceschi Biagioni A., Cellot G., Pati E., Lozano N., Ballesteros B., Casani R., Coimbra N.C., Kostarelos K., Ballerini L. Biomaterials; 271 (120749) 2021. 10.1016/j.biomaterials.2021.120749. IF: 10.317

    Engineered small graphene oxide (s-GO) sheets were previously shown to reversibly down-regulate glutamatergic synapses in the hippocampus of juvenile rats, disclosing an unexpected translational potential of these nanomaterials to target selective synapses in vivo. Synapses are anatomical specializations acting in the Central Nervous System (CNS) as functional interfaces among neurons. Dynamic changes in synaptic function, named synaptic plasticity, are crucial to learning and memory. More recently, pathological mechanisms involving dysfunctional synaptic plasticity were implicated in several brain diseases, from dementia to anxiety disorders. Hyper-excitability of glutamatergic neurons in the lateral nucleus of the amygdala complex (LA) is substantially involved in the storage of aversive memory induced by stressful events enabling post-traumatic stress disorder (PTSD). Here we translated in PTSD animal model the ability of s-GO, when stereotaxically administered to hamper LA glutamatergic transmission and to prevent the behavioral response featured in long-term aversive memory. We propose that s-GO, by interference with glutamatergic plasticity, impair LA-dependent memory retrieval related to PTSD. © 2021 The Authors


  • Nanotools for Sepsis Diagnosis and Treatment

    Papafilippou L., Claxton A., Dark P., Kostarelos K., Hadjidemetriou M. Advanced Healthcare Materials; 10 (1, 2001378) 2021. 10.1002/adhm.202001378. IF: 7.367

    Sepsis is one of the leading causes of death worldwide with high mortality rates and a pathological complexity hindering early and accurate diagnosis. Today, laboratory culture tests are the epitome of pathogen recognition in sepsis. However, their consistency remains an issue of controversy with false negative results often observed. Clinically used blood markers, C reactive protein (CRP) and procalcitonin (PCT) are indicators of an acute-phase response and thus lack specificity, offering limited diagnostic efficacy. In addition to poor diagnosis, inefficient drug delivery and the increasing prevalence of antibiotic-resistant microorganisms constitute significant barriers in antibiotic stewardship and impede effective therapy. These challenges have prompted the exploration for alternative strategies that pursue accurate diagnosis and effective treatment. Nanomaterials are examined for both diagnostic and therapeutic purposes in sepsis. The nanoparticle (NP)-enabled capture of sepsis causative agents and/or sepsis biomarkers in biofluids can revolutionize sepsis diagnosis. From the therapeutic point of view, currently existing nanoscale drug delivery systems have proven to be excellent allies in targeted therapy, while many other nanotherapeutic applications are envisioned. Herein, the most relevant applications of nanomedicine for the diagnosis, prognosis, and treatment of sepsis is reviewed, providing a critical assessment of their potentiality for clinical translation. © 2020 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH


  • Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes

    Musto M., Parisse P., Pachetti M., Memo C., Di Mauro G., Ballesteros B., Lozano N., Kostarelos K., Casalis L., Ballerini L. Carbon; 176: 458 - 469. 2021. 10.1016/j.carbon.2021.01.142. IF: 8.821

    Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features. © 2021 The Author(s)


  • Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications

    Wang B., Kostarelos K., Nelson B.J., Zhang L. Advanced Materials; 33 (4, 2002047) 2021. 10.1002/adma.202002047. IF: 27.398

    Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized. © 2020 Wiley-VCH GmbH


2020

  • Banning carbon nanotubes would be scientifically unjustified and damaging to innovation

    Heller D.A., Jena P.V., Pasquali M., Kostarelos K., Delogu L.G., Meidl R.E., Rotkin S.V., Scheinberg D.A., Schwartz R.E., Terrones M., Wang Y.H., Bianco A., Boghossian A.A., Cambré S., Cognet L., Corrie S.R., Demokritou P., Giordani S., Hertel T., Ignatova T., Islam M.F., Iverson N.M., Jagota A., Janas D., Kono J., Kruss S., Landry M.P., Li Y., Martel R., Maruyama S., Naumov A.V., Prato M., Quinn S.J., Roxbury D., Strano M.S., Tour J.M., Weisman R.B., Wenseleers W., Yudasaka M. Nature Nanotechnology; 15 (3): 164 - 166. 2020. 10.1038/s41565-020-0656-y. IF: 31.538

    [No abstract available]


  • Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design

    Arianna Gazzi, Laura Fusco, Marco Orecchioni, Silvia Ferrari, Giulia Franzoni, J Stephen Yan, Matthias Rieckher, Guotao Peng, Matteo Andrea Lucherelli, Isabella Anna Vacchi, Ngoc Do Quyen Chau, Alejandro Criado, Akcan Istif, Donato Mancino, Antonio Dominguez, Hagen Eckert, Ester Vázquez, Tatiana Da Ros, Paola Nicolussi, Vincenzo Palermo, Björn Schumacher, Gianaurelio Cuniberti, Yiyong Mai, Cecilia Clementi, Matteo Pasquali, Xinliang Feng, Kostas Kostarelos, Acelya Yilmazer, Davide BedognettI, Bengt Fadeel, Maurizio Prato, Alberto Bianco and Lucia Gemma Delogu Journal of Physics: Materials; 3 (34009) 2020. 10.1088/2515-7639/ab9317. IF: 0.000


  • Grouping all carbon nanotubes into a single substance category is scientifically unjustified

    Fadeel B., Kostarelos K. Nature Nanotechnology; 15 (3): 164. 2020. 10.1038/s41565-020-0654-0. IF: 31.538

    [No abstract available]


  • Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials

    Portioli C., Bussy C., Mazza M., Lozano N., Jasim D.A., Prato M., Bianco A., Bentivoglio M., Kostarelos K. Small; 16 (48, 2004029) 2020. 10.1002/smll.202004029. IF: 11.459

    Carbon-based nanomaterials (CNMs) are being explored for neurological applications. However, systematic in vivo studies investigating the effects of CNM nanocarriers in the brain and how brain cells respond to such nanomaterials are scarce. To address this, functionalized multiwalled carbon nanotubes and graphene oxide (GO) sheets are injected in mice brain and compared with charged liposomes. The induction of acute neuroinflammatory and neurotoxic effects locally and in brain structures distant from the injection site are assessed up to 1 week postadministration. While significant neuronal cell loss and sustained microglial cell activation are observed after injection of cationic liposomes, none of the tested CNMs induces either neurodegeneration or microglial activation. Among the candidate nanocarriers tested, GO sheets appear to elicit the least deleterious neuroinflammatory profile. At molecular level, GO induces moderate activation of proinflammatory markers compared to vehicle control. At histological level, brain response to GO is lower than after vehicle control injection, suggesting some capacity for GO to reduce the impact of stereotactic injection on brain. While these findings are encouraging and valuable in the selection and design of nanomaterial-based brain delivery systems, they warrant further investigations to better understand the mechanisms underlying GO immunomodulatory properties in brain. © 2020 Wiley-VCH GmbH


  • Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect

    Gallud A., Delaval M., Kinaret P., Marwah V.S., Fortino V., Ytterberg J., Zubarev R., Skoog T., Kere J., Correia M., Loeschner K., Al-Ahmady Z., Kostarelos K., Ruiz J., Astruc D., Monopoli M., Handy R., Moya S., Savolainen K., Alenius H., Greco D., Fadeel B. Advanced Science; 7 (22, 2002221) 2020. 10.1002/advs.202002221. IF: 15.840

    Despite considerable efforts, the properties that drive the cytotoxicity of engineered nanomaterials (ENMs) remain poorly understood. Here, the authors inverstigate a panel of 31 ENMs with different core chemistries and a variety of surface modifications using conventional in vitro assays coupled with omics-based approaches. Cytotoxicity screening and multiplex-based cytokine profiling reveals a good concordance between primary human monocyte-derived macrophages and the human monocyte-like cell line THP-1. Proteomics analysis following a low-dose exposure of cells suggests a nonspecific stress response to ENMs, while microarray-based profiling reveals significant changes in gene expression as a function of both surface modification and core chemistry. Pathway analysis highlights that the ENMs with cationic surfaces that are shown to elicit cytotoxicity downregulated DNA replication and cell cycle responses, while inflammatory responses are upregulated. These findings are validated using cell-based assays. Notably, certain small, PEGylated ENMs are found to be noncytotoxic yet they induce transcriptional responses reminiscent of viruses. In sum, using a multiparametric approach, it is shown that surface chemistry is a key determinant of cellular responses to ENMs. The data also reveal that cytotoxicity, determined by conventional in vitro assays, does not necessarily correlate with transcriptional effects of ENMs. © 2020 The Authors. Published by Wiley-VCH GmbH


  • Nano-scavengers for blood biomarker discovery in ovarian carcinoma

    Hadjidemetriou M., Papafilippou L., Unwin R.D., Rogan J., Clamp A., Kostarelos K. Nano Today; 34 (100901) 2020. 10.1016/j.nantod.2020.100901. IF: 16.907

    The development and implementation of biomarker-based screening tools for ovarian cancer require novel analytical platforms to enable the discovery of biomarker panels that will overcome the limitations associated with the clinically used CA-125.The systematic discovery of protein biomarkers directly from human plasma using proteomics remains extremely challenging, due to the wide concentration range of plasma proteins. Here, we describe the use of lipid-based nanoparticles (NPs) as an ‘omics’ enrichment tool to amplify cancer signals in the blood and to uncover disease specific signatures. We aimed to exploit the spontaneous interaction of clinically-used liposomes (Caelyx®) with plasma proteins, also known as’ protein corona’ formation, in order to facilitate the discovery of previously unreported differentially abundant molecules. Caelyx® liposomes were incubated with plasma samples obtained from advanced ovarian carcinoma patients and healthy donors and corona-coated liposomes were subsequently recovered. Comprehensive comparison between ‘healthy’ and ‘diseased’ corona samples by label-free proteomics resulted in the identification of multiple differentially abundant proteins. Moreover, immunoassay-based validation of selected proteins demonstrated the potential of nanoparticle-platform proposed to discover novel molecules with great diagnostic potential. This study proposes a nanoparticle-enabled workflow for plasma proteomic analysis in healthy and diseased states and paves the way for further work needed to discover and validate panels of novel biomarkers for disease diagnosis and monitoring. © 2020


  • Nanoscale nights of COVID-19

    Kostarelos K. Nature Nanotechnology; 15 (5): 343 - 344. 2020. 10.1038/s41565-020-0687-4. IF: 31.538

    [No abstract available]


  • Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract

    Peng G., Montenegro M.F., Ntola C.N.M., Vranic S., Kostarelos K., Vogt C., Toprak M.S., Duan T., Leifer K., Bräutigam L., Lundberg J.O., Fadeel B. Nanoscale; 12 (32): 16730 - 16737. 2020. 10.1039/d0nr03675g. IF: 6.895

    Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation. © 2020 The Royal Society of Chemistry.


  • Production and processing of graphene and related materials

    Backes C., Abdelkader A.M., Alonso C., Andrieux-Ledier A., Arenal R., Azpeitia J., Balakrishnan N., Banszerus L., Barjon J., Bartali R., Bellani S., Berger C., Berger R., Ortega M.M.B., Bernard C., Beton P.H., Beyer A., Bianco A., Bøggild P., Bonaccorso F., Barin G.B., Botas C., Bueno R.A., Carriazo D., Castellanos-Gomez A., Christian M., Ciesielski A., Ciuk T., Cole M.T., Coleman J., Coletti C., Crema L., Cun H., Dasler D., De Fazio D., Díez N., Drieschner S., Duesberg G.S., Fasel R., Feng X., Fina A., Forti S., Galiotis C., Garberoglio G., García J.M., Garrido J.A., Gibertini M., Gölzhäuser A., Gómez J., Greber T., Hauke F., Hemmi A., Hernandez-Rodriguez I., Hirsch A., Hodge S.A., Huttel Y., Jepsen P.U., Jimenez I., Kaiser U., Kaplas T., Kim H., Kis A., Papagelis K., Kostarelos K., Krajewska A., Lee K., Li C., Lipsanen H., Liscio A., Lohe M.R., Loiseau A., Lombardi L., López M.F., Martin O., Martín C., Martínez L., Martin-Gago J.A., Martínez J.I., Marzari N., Mayoral A., McManus J., Melucci M., Méndez J., Merino C., Merino P., Meyer A.P., Miniussi E., Miseikis V., Mishra N., Morandi V., Munuera C., Muñoz R., Nolan H., Ortolani L., Ott A.K., Palacio I., Palermo V., Parthenios J., Paste 2D Materials; 7 (2, 022001) 2020. 10.1088/2053-1583/ab1e0a. IF: 7.140

    We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. © 2020 The Author(s).


  • Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation

    Papafilippou L., Claxton A., Dark P., Kostarelos K., Hadjidemetriou M. Nanoscale; 12 (18): 10240 - 10253. 2020. 10.1039/d0nr02788j. IF: 6.895

    Rapid and accurate diagnosis of sepsis remains clinically challenging. The lack of specific biomarkers that can differentiate sepsis from non-infectious systemic inflammatory diseases often leads to excessive antibiotic treatment. Novel diagnostic tests are urgently needed to rapidly and accurately diagnose sepsis and enable effective treatment. Despite investment in cutting-edge technologies available today, the discovery of disease-specific biomarkers in blood remains extremely difficult. The highly dynamic environment of plasma restricts access to vital diagnostic information that can be obtained by proteomic analysis. Here, we employed clinically used lipid-based nanoparticles (AmBisome®) as an enrichment platform to analyze the human plasma proteome in the setting of sepsis. We exploited the spontaneous interaction of plasma proteins with nanoparticles (NPs) once in contact, called the 'protein corona', to discover previously unknown disease-specific biomarkers for sepsis diagnosis. Plasma samples obtained from non-infectious acute systemic inflammation controls and sepsis patients were incubated ex vivo with AmBisome® liposomes, and the resultant protein coronas were thoroughly characterised and compared by mass spectrometry (MS)-based proteomics. Our results demonstrate that the proposed nanoparticle enrichment technology enabled the discovery of 67 potential biomarker proteins that could reproducibly differentiate non-infectious acute systemic inflammation from sepsis. This study provides proof-of-concept evidence that nanoscale-based 'omics' enrichment technologies have the potential to substantially improve plasma proteomics analysis and to uncover novel biomarkers in a challenging clinical setting.


  • Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design

    Rodrigues A.F., Newman L., Jasim D., Mukherjee S.P., Wang J., Vacchi I.A., Ménard-Moyon C., Bianco A., Fadeel B., Kostarelos K., Bussy C. Advanced Science; 7 (12, 1903200) 2020. 10.1002/advs.201903200. IF: 15.840

    Safety assessment of graphene-based materials (GBMs) including graphene oxide (GO) is essential for their safe use across many sectors of society. In particular, the link between specific material properties and biological effects needs to be further elucidated. Here, the effects of lateral dimensions of GO sheets in acute and chronic pulmonary responses after single intranasal instillation in mice are compared. Micrometer-sized GO induces stronger pulmonary inflammation than nanometer-sized GO, despite reduced translocation to the lungs. Genome-wide RNA sequencing also reveals distinct size-dependent effects of GO, in agreement with the histopathological results. Although large GO, but not the smallest GO, triggers the formation of granulomas that persists for up to 90 days, no pulmonary fibrosis is observed. These latter results can be partly explained by Raman imaging, which evidences the progressive biotransformation of GO into less graphitic structures. The findings demonstrate that lateral dimensions play a fundamental role in the pulmonary response to GO, and suggest that airborne exposure to micrometer-sized GO should be avoided in the production plant or applications, where aerosolized dispersions are likely to occur. These results are important toward the implementation of a safer-by-design approach for GBM products and applications, for the benefit of workers and end-users. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


  • Splenic Capture and in Vivo Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets

    Newman L., Jasim D.A., Prestat E., Lozano N., De Lazaro I., Nam Y., Assas B.M., Pennock J., Haigh S.J., Bussy C., Kostarelos K. ACS Nano; 14 (8): 10168 - 10186. 2020. 10.1021/acsnano.0c03438. IF: 14.588

    Carbon nanomaterials, including 2D graphene-based materials, have shown promising applicability to drug delivery, tissue engineering, diagnostics, and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets were largely excreted via the kidneys; however, a small but significant portion of the material was sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM). This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin GO sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible. Copyright © 2020 American Chemical Society.


  • Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge

    Shin Y., Vranic S., Just-Baringo X., Gali S.M., Kisby T., Chen Y., Gkoutzidou A., Prestat E., Beljonne D., Larrosa I., Kostarelos K., Casiraghi C. Nanoscale; 12 (23): 12383 - 12394. 2020. 10.1039/d0nr02689a. IF: 6.895

    The outstanding properties of graphene offer high potential for biomedical applications. In this framework, positively charged nanomaterials show better interactions with the biological environment, hence there is strong interest in the production of positively charged graphene nanosheets. Currently, production of cationic graphene is either time consuming or producing dispersions with poor stability, which strongly limit their use in the biomedical field. In this study, we made a family of new cationic pyrenes, and have used them to successfully produce water-based, highly concentrated, stable, and defect-free graphene dispersions with positive charge. The use of different pyrene derivatives as well as molecular dynamics simulations allowed us to get insights on the nanoscale interactions required to achieve efficient exfoliation and stabilisation. The cationic graphene dispersions show outstanding biocompatibility and cellular uptake as well as exceptional colloidal stability in the biological medium, making this material extremely attractive for biomedical applications. © 2020 The Royal Society of Chemistry.


  • The biomolecule corona of lipid nanoparticles contains circulating cell-free DNA

    Gardner L., Warrington J., Rogan J., Rothwell D.G., Brady G., Dive C., Kostarelos K., Hadjidemetriou M. Nanoscale Horizons; 5 (11): 1476 - 1486. 2020. 10.1039/d0nh00333f. IF: 9.927

    The spontaneous adsorption of biomolecules onto the surface of nanoparticles (NPs) in complex physiological biofluids has been widely investigated over the last decade. Characterisation of the protein composition of the 'biomolecule corona' has dominated research efforts, whereas other classes of biomolecules, such as nucleic acids, have received no interest. Scarce, speculative statements exist in the literature about the presence of nucleic acids in the biomolecule corona, with no previous studies attempting to describe the contribution of genomic content to the blood-derived NP corona. Herein, we provide the first experimental evidence of the interaction of circulating cell-free DNA (cfDNA) with lipid-based NPs upon their incubation with human plasma samples, obtained from healthy volunteers and ovarian carcinoma patients. Our results also demonstrate an increased amount of detectable cfDNA in patients with cancer. Proteomic analysis of the same biomolecule coronas revealed the presence of histone proteins, suggesting an indirect, nucleosome-mediated NP-cfDNA interaction. The finding of cfDNA as part of the NP corona, offers a previously unreported new scope regarding the chemical composition of the 'biomolecule corona' and opens up new possibilities for the potential exploitation of the biomolecule corona for the enrichment and analysis of blood-circulating nucleic acids. © The Royal Society of Chemistry.


2019

  • Non-cytotoxic carbon nanocapsules synthesized via one-pot filling and end-closing of multi-walled carbon nanotubes

    Martincic M., Vranic S., Pach E., Sandoval S., Ballesteros B., Kostarelos K., Tobias G. Carbon; 141: 782 - 793. 2019. 10.1016/j.carbon.2018.10.006. IF: 7.466

    Filled carbon nanotubes (CNTs) find application in a variety of fields that expand from sensors to supercapacitors going through targeted therapies. Bulk filling of CNTs in general results in samples that contain a large amount of non-encapsulated material external to the CNTs. The presence of external material can dominate the properties of the resulting hybrids and can also induce side effects when employed in the biomedical field. Unless the encapsulated payloads have a strong interaction with the inner CNT walls, an additional step is required to block the ends of the CNTs thus allowing the selective removal of the non-encapsulated compounds while preserving the inner cargo. Herein we present a fast, easy and versatile approach that allows both filling (NaI, KI, BaI2, GdCl3 and SmCl3) and end-closing of multi-walled CNTs in a single-step, forming “carbon nanocapsules”. Remarkably the encapsulation of GdCl3 and SmCl3 leads to the formation of tubular van der Waals heterostructures. The prepared nanocapsules are efficiently internalized by cells without inducing cytotoxicity, thus presenting a safe tool for the delivery of therapeutic and dianostic agents to cells. The synergies of novel carbon and inorganic hybrid materials can be explored using the present approach. © 2018 Elsevier Ltd


2017

  • Graphene in the Design and Engineering of Next-Generation Neural Interfaces

    Kostarelos K., Vincent M., Hebert C., Garrido J.A. Advanced Materials; 29 (42, 1700909) 2017. 10.1002/adma.201700909. IF: 19.791

    Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene-based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


2016

  • Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking

    Servant A., Jacobs I., Bussy C., Fabbro C., Da Ros T., Pach E., Ballesteros B., Prato M., Nicolay K., Kostarelos K. Carbon; 97: 126 - 133. 2016. 10.1016/j.carbon.2015.08.051. IF: 6.198

    The development of efficient contrast agents for cell labelling coupled with powerful medical imaging techniques is of great interest for monitoring cell trafficking with potential clinical applications such as organ repair and regenerative medicine. In this paper, functionalised multi-walled carbon nanotubes (MWNTs) were engineered for cell labelling in T1-weighted MRI applications. These sophisticated constructs were covalently functionalised with the gadolinium (Gd) chelating agent, diethylene triamine pentaacetic acid (DTPA), enabling tight attachment of Gd atoms onto the nanotube surface. The resulting Gd-labelled MWNTs were found to be stable over 2 weeks in water and mouse serum and high payload of Gd atoms could be loaded onto the nanotubes. The r1 relaxivity of the Gd-MWNTs was a 3-fold higher than of the clinically approved T1 contrast agent Magnevist at a magnetic field strength of 7T. The contrast efficiency, expressed as the r1 relaxivity, of the Gd-MWNTs in Human Umbilical Vein Endothelial cells (HUVEC) was investigated at 7T and was found to be around 6.6 mM-1 s-1. There was no reduction of the contrast efficiency after internalisation in HUVECs, which was imparted to the ability of carbon nanotubes to translocate the cell membrane. © 2015 The Authors. Published by Elsevier Ltd.


2010

  • Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging

    You Hong, S.; Tobias, G.; Al-Jamal, K.T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P.D.; Sim, R.B.; Finucane, C.; Mather, S.J.; Green, M.L.H.; Kostarelos, K.; Davis, B.G. Nature Materials; 2010. .