Staff directory Isaac Alcón Rovira

Publications

2024

  • Tailoring giant quantum transport anisotropy in nanoporous graphenes under electrostatic disorder

    Alcon, Isaac; Cummings, Aron W; Roche, Stephan Nanoscale Horizons; 9 (3) 2024. 10.1039/d3nh00416c.


2023

  • Emergent Spin Frustration in Neutral Mixed-Valence 2D Conjugated Polymers: A Potential Quantum Materials Platform

    Alcon, I; Ribas-Arino, J; Moreira, ID; Bromley, ST Journal Of The American Chemical Society; 145 (10): 5674 - 5683. 2023. 10.1021/jacs.2c11185. IF: 15.000


  • Mechanistic Insights into Electronic Current Flow through Quinone Devices

    Conrad, L; Alcon, I; Tremblay, JC; Paulus, B; Miyazaki, S Nanomaterials; 13 (24): 3085. 2023. 10.3390/nano13243085. IF: 5.300


2022

  • Unveiling the Multiradical Character of the Biphenylene Network and Its Anisotropic Charge Transport

    Alcón I., Calogero G., Papior N., Antidormi A., Song K., Cummings A.W., Brandbyge M., Roche S. Journal of the American Chemical Society; 2022. 10.1021/jacs.2c02178.

    Recent progress in the on-surface synthesis and characterization of nanomaterials is facilitating the realization of new carbon allotropes, such as nanoporous graphenes, graphynes, and 2D π-conjugated polymers. One of the latest examples is the biphenylene network (BPN), which was recently fabricated on gold and characterized with atomic precision. This gapless 2D organic material presents uncommon metallic conduction, which could help develop innovative carbon-based electronics. Here, using first principles calculations and quantum transport simulations, we provide new insights into some fundamental properties of BPN, which are key for its further technological exploitation. We predict that BPN hosts an unprecedented spin-polarized multiradical ground state, which has important implications for the chemical reactivity of the 2D material under practical use conditions. The associated electronic band gap is highly sensitive to perturbations, as seen in finite temperature (300 K) molecular dynamics simulations, but the multiradical character remains stable. Furthermore, BPN is found to host in-plane anisotropic (spin-polarized) electrical transport, rooted in its intrinsic structural features, which suggests potential device functionality of interest for both nanoelectronics and spintronics. © 2022 American Chemical Society. All rights reserved.


2021

  • Acetylene-Mediated Electron Transport in Nanostructured Graphene and Hexagonal Boron Nitride

    Alcón I., Papior N., Calogero G., Viñes F., Gamallo P., Brandbyge M. Journal of Physical Chemistry Letters; 12 (45): 11220 - 11227. 2021. 10.1021/acs.jpclett.1c03166. IF: 6.475

    The discovery of graphene has catalyzed the search for other 2D carbon allotropes, such as graphynes, graphdiynes, and 2D π-conjugated polymers, which have been theoretically predicted or experimentally synthesized during the past decade. These materials exhibit a conductive nature bound to their π-conjugated sp2 electronic system. Some cases include sp-hybridized moieties in their nanostructure, such as acetylenes in graphynes; however, these act merely as electronic couplers between the conducting π-orbitals of sp2 centers. Herein, via first-principles calculations and quantum transport simulations, we demonstrate the existence of an acetylene-meditated transport mechanism entirely hosted by sp-hybridized orbitals. For that we propose a series of nanostructured 2D materials featuring linear arrangements of closely packed acetylene units which function as sp-nanowires. Because of the very distinct nature of this unique transport mechanism, it appears to be highly complementary with π-conjugation, thus potentially becoming a key tool for future carbon nanoelectronics. © 2021 American Chemical Society.


2020

  • Neutral Organic Radical Formation by Chemisorption on Metal Surfaces

    Ajayakumar M.R., Moreno C., Alcón I., Illas F., Rovira C., Veciana J., Bromley S.T., Mugarza A., Mas-Torrent M. Journal of Physical Chemistry Letters; 11 (10): 3897 - 3904. 2020. 10.1021/acs.jpclett.0c00269. IF: 6.710

    Organic radical monolayers (r-MLs) bonded to metal surfaces are potential materials for the development of molecular (spin)electronics. Typically, stable radicals bearing surface anchoring groups are used to generate r-MLs. Following a recent theoretical proposal based on a model system, we report the first experimental realization of a metal surface-induced r-ML, where a rationally chosen closed-shell precursor 3,5-dichloro-4-[bis(2,4,6-trichlorophenyl)methylen]cyclohexa-2,5-dien-1-one (1) transforms into a stable neutral open-shell species (1) via chemisorption on the Ag(111) surface. X-ray photoelectron spectroscopy reveals that the >C=O group of 1 reacts with the surface, forming a C-O-Ag linkage that induces an electronic rearrangement that transforms 1 to 1. We further show that surface reactivity is an important factor in this process whereby Au(111) is inert towards 1, whereas the Cu(111) surface leads to dehalogenation reactions. The radical nature of the Ag(111)-bound monolayer was further confirmed by angle-resolved photoelectron spectroscopy and electronic structure calculations, which provide evidence of the emergence of the singly occupied molecular orbital (SOMO) of 1. © 2020 American Chemical Society.