Staff directory
Francesc Alzina Sureda
Senior Researcher
francesc.alzina(ELIMINAR)@icn2.cat
Ultrafast Dynamics in Nanoscale Systems
- ORCID: 0000-0002-7082-0624
Publications
2017
-
Angle-Dependent Photoluminescence Spectroscopy of Solution-Processed Organic Semiconducting Nanobelts
Wang M., Gong Y., Alzina F., Sotomayor Torres C.M., Li H., Zhang Z., He J. Journal of Physical Chemistry C; 121 (22): 12441 - 12446. 2017. 10.1021/acs.jpcc.7b02958. IF: 4.536
We report an anomalous anisotropy in photoluminescence (PL) from crystalline nanobelt of an organic small-molecule semiconductor, 6,13-dichloropentacene (DCP). Large-area well-aligned DCP nanobelt arrays are readily formed by self-assembly through solution method utilizing the strong anisotropic interactions between molecules. The absorption spectrum of the arrays suggests the formation of both intramolecular exciton and intermolecular exciton. However, the results of angle-dependent PL spectroscopy indicate that the PL arises only from the relaxation of intramolecular exciton, which has an optical transition dipole moment with an angle of 115° with the long-axis of the nanobelts. The angular dependence of PL signals follows a quartic rule (IPL(θ) ∞ cos4(θ - 115)) and agrees well with the optical selection rule of individual DCP molecules. The measured polarization ratio ρ from the individual nanobelts is on average 0.91 ± 0.02, superior to that of prior-art organic semiconductors. These results provide new insights into exciton behavior in 1D π-π stacking organic semiconductors and demonstrate DCP's great potential in the photodetectors and optical switches for large-scale organic optoelectronics. © 2017 American Chemical Society.
-
Elastic Properties of Few Nanometers Thick Polycrystalline MoS2 Membranes: A Nondestructive Study
Graczykowski B., Sledzinska M., Placidi M., Saleta Reig D., Kasprzak M., Alzina F., Sotomayor Torres C.M. Nano Letters; 17 (12): 7647 - 7651. 2017. 10.1021/acs.nanolett.7b03669. IF: 12.712
The performance gain-oriented nanostructurization has opened a new pathway for tuning mechanical features of solid matter vital for application and maintained performance. Simultaneously, the mechanical evaluation has been pushed down to dimensions way below 1 μm. To date, the most standard technique to study the mechanical properties of suspended 2D materials is based on nanoindentation experiments. In this work, by means of micro-Brillouin light scattering we determine the mechanical properties, that is, Young modulus and residual stress, of polycrystalline few nanometers thick MoS2 membranes in a simple, contact-less, nondestructive manner. The results show huge elastic softening compared to bulk MoS2, which is correlated with the sample morphology and the residual stress. © 2017 American Chemical Society.
-
Modification of thermal conductivity and phonon dispersion relation by means of phononic crystals
Sledzinska M., Sachat A.E., Reparaz J.S., Wagner M.R., Alzina F., Torres C.M.S. THERMINIC 2017 - 23rd International Workshop on Thermal Investigations of ICs and Systems; 2017-January: 1 - 4. 2017. 10.1109/THERMINIC.2017.8233817.
Heat conduction in silicon can be effectively reduced by means of periodic patterning of free-standing membranes. In this work we show a straightforward method for fabrication of free-standing phononic crystals based on thin silicon membranes. We use the contactless two-laser Raman thermometry method to measure thermal conductivity of the hexagonal phononic crystals. The aim of the study is to understand and control the behaviour of phonons in phononic crystals, with the target of minimizing the thermal conductivity. In particular, we are interested in the influence of the surface-to-volume ratio on the thermal conductivity. © 2017 IEEE.
-
Nonlinear dynamics and chaos in an optomechanical beam
Navarro-Urrios D., Capuj N.E., Colombano M.F., Garciá P.D., Sledzinska M., Alzina F., Griol A., Martínez A., Sotomayor-Torres C.M. Nature Communications; 8 ( 14965) 2017. 10.1038/ncomms14965. IF: 12.124
Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two- A nd four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two- A nd four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications. © 2017 The Author(s).
-
Optomechanical coupling in the Anderson-localization regime
García P.D., Bericat-Vadell R., Arregui G., Navarro-Urrios D., Colombano M., Alzina F., Sotomayor-Torres C.M. Physical Review B; 95 (11, 115129) 2017. 10.1103/PhysRevB.95.115129. IF: 3.836
Optomechanical crystals, purposely designed and fabricated semiconductor nanostructures, are used to enhance the coupling between the electromagnetic field and the mechanical vibrations of matter at the nanoscale. However, in real optomechanical crystals, imperfections open extra channels where the transfer of energy is lost, reducing the optomechanical coupling efficiency. Here, we quantify the role of disorder in a paradigmatic one-dimensional optomechanical crystal with full phononic and photonic band gaps. We show how disorder can be exploited as a resource to enhance the optomechanical coupling beyond engineered structures, thus providing a new tool set for optomechanics. © 2017 American Physical Society.
-
Raman antenna effect from exciton-phonon coupling in organic semiconducting nanobelts
Wang M., Gong Y., Alzina F., Svoboda O., Ballesteros B., Sotomayor Torres C.M., Xiao S., Zhang Z., He J. Nanoscale; 9 (48): 19328 - 19336. 2017. 10.1039/c7nr07212k. IF: 7.367
The highly anisotropic interactions in organic semiconductors together with the soft character of organic materials lead to strong coupling between nuclear vibrations and exciton dynamics, which potentially results in anomalous electrical, optical and optoelectrical properties. Here, we report on the Raman antenna effect from organic semiconducting nanobelts 6,13-dichloropentacene (DCP), resulting from the coupling of molecular excitons and intramolecular phonons. The highly ordered crystalline structure in DCP nanobelts enables the precise polarization-resolved spectroscopic measurement. The angle-dependent Raman spectroscopy under resonant excitation shows that all Raman modes from the skeletal vibrations of DCP molecule act like a nearly perfect dipole antenna IRaman ∝ cos4(θ - 90), with almost zero (maximum) Raman scattering parallel (perpendicular) to the nanobelt's long-axis. The Raman antenna effect in DCP nanobelt is originated from the coupling between molecular skeletal vibrations and intramolecular exciton and the confinement of intermolecular excitons. It dramatically enhances the Raman polarization ratio (ρ =I∥/I⊥ > 25) and amplifies the anisotropy of the angle-dependent Raman scattering (κRaman = Imax/Imin > 12) of DCP nanobelts. These findings have crucial implications for fundamental understanding on the exciton-phonon coupling and its effects on the optical properties of organic semiconductors. © 2017 The Royal Society of Chemistry.
-
Record Low Thermal Conductivity of Polycrystalline MoS2 Films: Tuning the Thermal Conductivity by Grain Orientation
Sledzinska M., Quey R., Mortazavi B., Graczykowski B., Placidi M., Saleta Reig D., Navarro-Urrios D., Alzina F., Colombo L., Roche S., Sotomayor Torres C.M. ACS Applied Materials and Interfaces; 9 (43): 37905 - 37911. 2017. 10.1021/acsami.7b08811. IF: 7.504
We report a record low thermal conductivity in polycrystalline MoS2 obtained for ultrathin films with varying grain sizes and orientations. By optimizing the sulfurization parameters of nanometer-thick Mo layers, five MoS2 films containing a combination of horizontally and vertically oriented grains, with respect to the bulk (001) monocrystal, were grown. From transmission electron microscopy, the average grain size, typically below 10 nm, and proportion of differently oriented grains were extracted. The thermal conductivity of the suspended samples was extracted from a Raman laser-power-dependent study, and the lowest value of thermal conductivity of 0.27 W m-1 K-1, which reaches a similar value as that of Teflon, is obtained in a polycrystalline sample formed by a combination of horizontally and vertically oriented grains in similar proportion. Analysis by means of molecular dynamics and finite element method simulations confirm that such a grain arrangement leads to lower grain boundary conductance. We discuss the possible use of these thermal insulating films in the context of electronics and thermoelectricity. © 2017 American Chemical Society.
-
Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures
Graczykowski B., El Sachat A., Reparaz J.S., Sledzinska M., Wagner M.R., Chavez-Angel E., Wu Y., Volz S., Wu Y., Alzina F., Sotomayor Torres C.M. Nature Communications; 8 (1, 415) 2017. 10.1038/s41467-017-00115-4. IF: 12.124
Heat conduction in silicon can be effectively engineered by means of sub-micrometre porous thin free-standing membranes. Tunable thermal properties make these structures good candidates for integrated heat management units such as waste heat recovery, rectification or efficient heat dissipation. However, possible applications require detailed thermal characterisation at high temperatures which, up to now, has been an experimental challenge. In this work we use the contactless two-laser Raman thermometry to study heat dissipation in periodic porous membranes at high temperatures via lattice conduction and air-mediated losses. We find the reduction of the thermal conductivity and its temperature dependence closely correlated with the structure feature size. On the basis of two-phonon Raman spectra, we attribute this behaviour to diffuse (incoherent) phonon-boundary scattering. Furthermore, we investigate and quantify the heat dissipation via natural air-mediated cooling, which can be tuned by engineering the porosity. © 2017 The Author(s).
-
Thermal transport in epitaxial Si1-xGe x alloy nanowires with varying composition and morphology
Sachat A.E., Reparaz J.S., Spiece J., Alonso M.I., Goñi A.R., Garriga M., Vaccaro P.O., Wagner M.R., Kolosov O.V., Sotomayor Torres C.M., Alzina F. Nanotechnology; 28 (50, 505704) 2017. 10.1088/1361-6528/aa9497. IF: 3.440
We report on structural, compositional, and thermal characterization of self-assembled in-plane epitaxial Si1-xGe x alloy nanowires grown by molecular beam epitaxy on Si (001) substrates. The thermal properties were studied by means of scanning thermal microscopy (SThM), while the microstructural characteristics, the spatial distribution of the elemental composition of the alloy nanowires and the sample surface were investigated by transmission electron microscopy and energy dispersive x-ray microanalysis. We provide new insights regarding the morphology of the in-plane nanostructures, their size-dependent gradient chemical composition, and the formation of a 5 nm thick wetting layer on the Si substrate surface. In addition, we directly probe heat transfer between a heated scanning probe sensor and Si1-xGe x alloy nanowires of different morphological characteristics and we quantify their thermal resistance variations. We correlate the variations of the thermal signal to the dependence of the heat spreading with the cross-sectional geometry of the nanowires using finite element method simulations. With this method we determine the thermal conductivity of the nanowires with values in the range of 2-3 W m-1 K-1. These results provide valuable information in growth processes and show the great capability of the SThM technique in ambient environment for nanoscale thermal studies, otherwise not possible using conventional techniques. © 2017 IOP Publishing Ltd.
2016
-
Acoustic Phonons in Ultrathin Free-Standing Silicon Membranes
Torres C.M.S., Alzina F., Shchepetov A., Chavez-Angel E., Cuffe J., Graczykowski B., Prunnila M., Reparaz J.S., Ahopelto J. Silicon Nanomembranes: Fundamental Science and Applications; : 305 - 326. 2016. 10.1002/9783527691005.ch12.
This chapter reviews phonon research in ultrathin free-standing silicon membranes made of silicon-on-insulator (SOI) wafers. The membranes are stress-free and some are intentionally stressed. Their fabrication is described in both cases. Calculations and experimental work on confined acoustic phonons, dispersion relations, phonon lifetimes, and transport mechanisms in different phonon propagation regimes are gathered to provide a comprehensive view of the underlying physics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved.
-
Fabrication of phononic crystals on free-standing silicon membranes
Sledzinska M., Graczykowski B., Alzina F., Santiso Lopez J., Sotomayor Torres C.M. Microelectronic Engineering; 149: 41 - 45. 2016. 10.1016/j.mee.2015.09.004. IF: 1.277
Free-standing Si films have been and remain an excellent example to study experimentally the effect of the reduction of the characteristic size on the phonon dispersion relation. A step further in geometrical complexity and, therefore, in increasing the control and manipulation of phonons is achieved by introducing periodicity in the medium to form phononic crystals. Here we report on the development of the fabrication process of large-area, solid-air and solid-solid two-dimensional phononic crystals, directly on free-standing, single crystalline silicon membranes. The patterning of the membranes involved electron-beam lithography and reactive ion etching for holes or metal evaporation and lift-off for pillars. The fabrication was possible due to the external strain induced on the membrane in order to reduce the buckling, which is typically found in large area free-standing structures. As a result, we obtained 250 nm thick structured membranes with patterned areas up to 100 × 100 μm, feature size between 100 and 300 nm and periodicity between 300 and 500 nm. The changes in dispersion relations of hypersonic acoustic phonons due to nanopatterning in free-standing silicon membranes were measured by Brillouin light scattering and the results were compared with numerical calculations by finite elements method. Information on phonon dispersion relation combined with a reliable fabrication process for large-scale structures opens a way for phonon engineering in more complex devices. © 2015 Elsevier B.V. All rights reserved.
-
Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals
Graczykowski B., Alzina F., Gomis-Bresco J., Sotomayor Torres C.M. Journal of Applied Physics; 119 (2, 025308) 2016. 10.1063/1.4939825. IF: 2.101
In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe. © 2016 AIP Publishing LLC.
-
Nanophononics: State of the art and perspectives
Volz S., Ordonez-Miranda J., Shchepetov A., Prunnila M., Ahopelto J., Pezeril T., Vaudel G., Gusev V., Ruello P., Weig E.M., Schubert M., Hettich M., Grossman M., Dekorsy T., Alzina F., Graczykowski B., Chavez-Angel E., Sebastian Reparaz J., Wagner M.R., Sotomayor-Torres C.M., Xiong S., Neogi S., Donadio D. European Physical Journal B; 89 (1, 15) 2016. 10.1140/epjb/e2015-60727-7. IF: 1.223
Understanding and controlling vibrations in condensed matter is emerging as an essential necessity both at fundamental level and for the development of a broad variety of technological applications. Intelligent design of the band structure and transport properties of phonons at the nanoscale and of their interactions with electrons and photons impact the efficiency of nanoelectronic systems and thermoelectric materials, permit the exploration of quantum phenomena with micro- and nanoscale resonators, and provide new tools for spectroscopy and imaging. In this colloquium we assess the state of the art of nanophononics, describing the recent achievements and the open challenges in nanoscale heat transport, coherent phonon generation and exploitation, and in nano- and optomechanics. We also underline the links among the diverse communities involved in the study of nanoscale phonons, pointing out the common goals and opportunities. © The Author(s) 2016.
-
Nanoscale pillar hypersonic surface phononic crystals
Yudistira D., Boes A., Graczykowski B., Alzina F., Yeo L.Y., Sotomayor Torres C.M., Mitchell A. Physical Review B; 94 (9, 094304) 2016. 10.1103/PhysRevB.94.094304.
We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering. © 2016 American Physical Society.
-
Self-pulsing and phonon lasing in optomechanical crystals
Navarro-Urrios D., Capuj N.E., Gomis-Bresco J., Colombano M.F., García P.D., Sledzinska M., Alzina F., Griol A., Martinez A., Sotomayor-Torres C.M. International Conference on Transparent Optical Networks; 2016-August (7550436) 2016. 10.1109/ICTON.2016.7550436.
We report on a novel and efficient strategy that can drive a mechanical mode into the lasing regime by exploiting the radiation pressure force in optomechanical (OM) cavities. The pumping mechanism is based on a self-pulsing limit-cycle, which is a spontaneous process that modulates the intracavity radiation pressure force in resonance with a mechanical eigenmode of the OM cavity. © 2016 IEEE.
-
Self-sustained coherent phonon generation in optomechanical cavities
Navarro-Urrios D., Gomis-Bresco J., Alzina F., Capuj N.E., García P.D., Colombano M.F., Chavez-Angel E., Sotomayor-Torres C.M. Journal of Optics (United Kingdom); 18 (9, 094006) 2016. 10.1088/2040-8978/18/9/094006. IF: 1.847
Optical forces can set tiny objects in states of mechanical self-sustained oscillation, spontaneously generating periodic signals by extracting power from steady sources. Miniaturized self-sustained coherent phonon sources are interesting for applications such as mass-force sensing, intra-chip metrology and intra-chip time-keeping among others. In this paper, we review several mechanisms and techniques that can drive a mechanical mode into the lasing regime by exploiting the radiation pressure force in optomechanical cavities, namely stimulated emission, dynamical back-action, forward stimulated Brillouin scattering and self-pulsing. © 2016 IOP Publishing Ltd.
-
Thermal conductivity of MoS2 polycrystalline nanomembranes
Sledzinska M., Graczykowski B., Placidi M., Reig D.S., El Sachat A., Reparaz J.S., Alzina F., Mortazavi B., Quey R., Colombo L., Roche S., Torres C.M.S. 2D Materials; 3 (3, 035016) 2016. 10.1088/2053-1583/3/3/035016. IF: 9.611
Heat conduction in 2D materials can be effectively engineered by means of controlling nanoscale grain structure. Afavorable thermal performance makes these structures excellent candidates for integrated heat management units. Here we show combined experimental and theoretical studies for MoS2 nanosheets in a nanoscale grain-size limit.Wereport thermal conductivity measurements on 5 nm thick polycrystalline MoS2 by means of 2-laser Raman thermometry. The free-standing, drum-like MoS2 nanomembranes were fabricated using a novel polymer- and residue-free, wet transfer, in which we took advantage of the difference in the surface energies between MoS2 and the growth substrate to transfer the CVD-grown nanosheets. The measurements revealed a strong reduction in the in-plane thermal conductivity down to about 0.73 ± 0.25 W m-1 K-1. The results are discussed theoretically using finite elements method simulations for a polycrystalline film, and a scaling trend of the thermally conductivity with grain size is proposed. © 2016 IOP Publishing Ltd.
-
Two-Dimensional Phononic Crystals: Disorder Matters
Wagner M.R., Graczykowski B., Reparaz J.S., El Sachat A., Sledzinska M., Alzina F., Sotomayor Torres C.M. Nano Letters; 16 (9): 5661 - 5668. 2016. 10.1021/acs.nanolett.6b02305. IF: 13.779
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder. © 2016 American Chemical Society.
2015
-
A self-stabilized coherent phonon source driven by optical forces
Navarro-Urrios D., Capuj N.E., Gomis-Bresco J., Alzina F., Pitanti A., Griol A., Martínez A., Sotomayor Torres C.M. Scientific Reports; 5 ( 15733) 2015. 10.1038/srep15733. IF: 5.578
We report a novel injection scheme that allows for phonon lasing in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10'2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications.
-
Elucidation of the wettability of graphene through a multi-length-scale investigation approach
Amadei C.A., Lai C.-Y., Esplandiu M.J., Alzina F., Vecitis C.D., Verdaguer A., Chiesa M. RSC Advances; 5 (49): 39532 - 39538. 2015. 10.1039/c5ra04397b. IF: 3.840
Univocal conclusions around the wettability of graphene exposed to environmental conditions remain elusive despite the recent efforts of several research groups. The main discrepancy rests on the question of whether a graphene monolayer (GML) is transparent or not to water and more generally what the role is that the substrate plays in determining the degree of wetting of the GML. In this work, we investigate the water transparency of GML by means of a multi-length-scale approach. We complement traditional static contact angle measurements and environmental scanning electron microscopy experiments with atomic force microscopy based force spectroscopy to assess the role that intermolecular interactions play in determining the wetting of GML. To gain deeper insight into the wetting transparency issue, we perform experiments on inert metals, such as gold and platinum, covered or not covered by GML. The comparison of the results obtained for different systems (i.e. GML covered and uncovered inert metals), provides unambiguous evidence that supports the non-wetting transparency theory of GML. This work aims to assist the development of technologies based on graphene-water interaction, such as graphitic membranes for water separation processes. © The Royal Society of Chemistry 2015.
-
Phonon dispersion in hypersonic two-dimensional phononic crystal membranes
Graczykowski B., Sledzinska M., Alzina F., Gomis-Bresco J., Reparaz J.S., Wagner M.R., Sotomayor Torres C.M. Physical Review B - Condensed Matter and Materials Physics; 91 (7, 075414) 2015. 10.1103/PhysRevB.91.075414. IF: 3.736
We investigate experimentally and theoretically the acoustic phonon propagation in two-dimensional phononic crystal membranes. Solid-air and solid-solid phononic crystals were made of square lattices of holes and Au pillars in and on 250 nm thick single crystalline Si membrane, respectively. The hypersonic phonon dispersion was investigated using Brillouin light scattering. Volume reduction (holes) or mass loading (pillars) accompanied with second-order periodicity and local resonances are shown to significantly modify the propagation of thermally activated GHz phonons. We use numerical modeling based on the finite element method to analyze the experimental results and determine polarization, symmetry, or three-dimensional localization of observed modes. © 2015 American Physical Society.
2014
-
A novel contactless technique for thermal conductivity determination: Two-laser Raman thermometry
Reparaz J.S., Chavez-Angel E., Wagner M.R., Graczykowski B., Gomis-Bresco J., Alzina F., Sotomayor Torres C.M. THERMINIC 2014 - 20th International Workshop on Thermal Investigations of ICs and Systems, Proceeding; (6972535) 2014. 10.1109/THERMINIC.2014.6972535.
We present an extension of the method for thermal characterisation named 'Raman Thermometry' that relaxes the assumption of boundary conditions by spatially resolving the thermal field. The technique is contact-less and suitable to study nanoscale systems unattainable to other by other more invasive thermal characterisation techniques. © 2014 IEEE.
-
Thermal Energy Harvesting
Mouis M., Chávez-Ángel E., Sotomayor-Torres C., Alzina F., Costache M.V., Nassiopoulou A.G., Valalaki K., Hourdakis E., Valenzuela S.O., Viala B., Zakharov D., Shchepetov A., Ahopelto J. Beyond CMOS Nanodevices 1; 9781848216549: 135 - 219. 2014. 10.1002/9781118984772.ch7.
This chapter presents some recent advances in the field of thermal energy harvesting, starting with thermoelectric energy harvesting, with a focus on the prospects of materials nanostructuration. Research toward alternative solutions will also be presented. Thermoelectric (TE) conversion is the most straightforward method to convert thermal energy into electrical energy, able to power such systems as autonomous sensor networks. Raman thermometry offers particular advantages for a fast and contactless determination of the thermal conductivity. The highly porous Si material is nanostructured and has the properties of confined systems, including a very low thermal conductivity. The chapter explores an alternative route for thermal energy harvesting (TEH) with composites using the mechanical coupling between a thermal shape memory alloy (SMA) and a piezoelectric material. © ISTE Ltd 2014. All rights reserved.
-
Thermal Isolation Through Nanostructuring
Leadley D., Shah V., Ahopelto J., Alzina F., Chávez-Ángel E., Muhonen J., Myronov M., Nassiopoulou A.G., Nguyen H., Parker E., Pekola J., Prest M., Prunnila M., Reparaz J.S., Shchepetov A., Sotomayor-Torres C., Valalaki K., Whall T. Beyond CMOS Nanodevices 1; 9781848216549: 331 - 363. 2014. 10.1002/9781118984772.ch12.
This chapter discusses the cooling of a platform, which requires the electronic coolers to extract heat by coupling to phonons within the platform material. Major results obtained within the nanofunction NoE on the development of nanomodulated magnetic materials and the investigation of their main properties are also presented. The cooling power of the devices becomes paramount, as opposed to the base temperature that could be reached, and must exceed heat leaks into the platform from the surroundings. This indirect cooling is desirable for systems where electrical isolation from the refrigeration elements is required, such as in quantum information applications or superconducting transition edge sensors (TESs). Thick porous Si layers on the Si wafer constitute alternative structures that could replace the rather fragile silicon nitride membranes for use as thermal isolation platforms. The structure and morphology of porous Si determines its electrical and thermal conductivity. © ISTE Ltd 2014. All rights reserved.