Staff directory
Guillaume Sauthier
Research technician of the Photoemission Spectroscopy Facility
guillaume.sauthier(ELIMINAR)@icn2.cat
Photoemission Spectroscopy (XPS and UPS) Facility
- ORCID: 0000-0003-3566-3878
Publications
2017
-
Inductively coupled remote plasma-enhanced chemical vapor deposition (rPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures
Cuxart M.G., Šics I., Goñi A.R., Pach E., Sauthier G., Paradinas M., Foerster M., Aballe L., Fernandez H.M., Carlino V., Pellegrin E. Carbon; 117: 331 - 342. 2017. 10.1016/j.carbon.2017.02.067. IF: 6.337
Multiple layers of graphene thin films with micro-crystalline orientation and vertical graphene nano-sheets were grown on different substrates (i.e., polycrystalline nickel foil, Ni(111), highly oriented pyrolytic graphite) using a single-step process based on low-pressure remote Plasma-Enhanced Chemical Vapor Deposition (rPE-CVD). In contrast to previous studies, a novel basic approach to this technique including a new remote inductively coupled RF plasma source has been used to (i) minimize the orientational effect of the plasma electrical fields during the catalyst-free growth of graphene nano-sheets, (ii) warrant for a low graphene defect density via low plasma kinetics, (iii) decouple the dissociation process of the gas from the growth process of graphene on the substrate, (iv) tune the feedstock gas chemistry in view of improving the graphene growth, and (v) reduce the growth temperature as compared to conventional chemical vapor deposition (CVD). In order to study the various aspects of the rPE-CVD graphene growth modes and to assess the characteristics of the resulting graphene layers, Raman spectroscopy, XPS, SEM, and STM were used. The results give evidence for the successful performance of this new rPE-CVD plasma deposition source, that can be combined with in situ UHV-based processess for the production of, e. g., hybrid metal ferromagnet/graphene systems. © 2017 Elsevier Ltd
-
Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics
Moreno Fernández H., Thomasset M., Sauthier G., Rogler D., Dietsch R., Barrett R., Carlino V., Pellegrin E. Proceedings of SPIE - The International Society for Optical Engineering; 10236 ( 102360E) 2017. 10.1117/12.2269374. IF: 0.000
Boron carbide (B4C)-due to its exceptional mechanical properties-is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, B4C-coated optics are subject to ubiquitous carbon contaminations. These contaminations-that are presumably produced via cracking of CHx and CO2 molecules by photoelectrons emitted from the optical components-represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of B4C cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated B4C test samples via an inductively coupled O2/Ar and Ar/H2 remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the B4C optical coatings and surfaces before and after the plasma cleaning process are reported. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.