Staff directory José Antonio Suárez del Pino

Publications

2024

  • Porous and Meltable Metal-Organic Polyhedra for the Generation and Shaping of Porous Mixed-Matrix Composites

    Baeckmann, Cornelia von; Martinez-Esain, Jordi; Suarez del Pino, Jose; Meng, Lingxin; Garcia-Masferrer, Joan; Faraudo, Jordi; Sort, Jordi; Carne-Sanchez, Arnau; Maspoch, Daniel Journal Of The American Chemical Society; 146 (11): 7159 - 7164. 2024. 10.1021/jacs.4c00407.


  • β-Ketoenamine-Linked Covalent Organic Frameworks Synthesized via Gel-to-Gel Monomer Exchange Reaction: From Aerogel Monoliths to Electrodes for Supercapacitors

    Jesús Á. Martín‐Illán; Laura Sierra; Ana Guillem‐Navajas; José Antonio Suárez; Sergio Royuela; David Rodríguez‐San‐Miguel; Daniel Maspoch; P. Ocón; Félix Zamora Advanced Functional Materials; 2024. 10.1002/adfm.202403567.


2023

  • A mesoporous Zr-based metal-organic framework driven by the assembly of an octatopic linker

    Ortin-Rubio, B; Perona-Bermejo, C; del Pino, JA; Carmona, FJ; Gandara, F; Navarro, JAR; Juanhuix, J; Imaz, I; Maspoch, D Chemical Communications; 59 (50): 7803 - 7806. 2023. 10.1039/d3cc01831h. IF: 4.900


  • Monolithic Zirconium-Based Metal-Organic Frameworks for Energy-Efficient Water Adsorption Applications

    Camur, C; Babu, R; del Pino, JAS; Rampal, N; Perez-Carvajal, J; Hugenell, P; Ernst, SJ; Silvestre-Albero, J; Imaz, I; Madden, DG; Maspoch, D; Fairen-Jimenez, D Advanced Materials; 35 (23) 2023. 10.1002/adma.202209104. IF: 29.400


2022

  • How Reproducible are Surface Areas Calculated from the BET Equation?

    Osterrieth J.W.M., Rampersad J., Madden D., Rampal N., Skoric L., Connolly B., Allendorf M.D., Stavila V., Snider J.L., Ameloot R., Marreiros J., Ania C., Azevedo D., Vilarrasa-Garcia E., Santos B.F., Bu X.-H., Chang Z., Bunzen H., Champness N.R., Griffin S.L., Chen B., Lin R.-B., Coasne B., Cohen S., Moreton J.C., Colón Y.J., Chen L., Clowes R., Coudert F.-X., Cui Y., Hou B., D'Alessandro D.M., Doheny P.W., Dincă M., Sun C., Doonan C., Huxley M.T., Evans J.D., Falcaro P., Ricco R., Farha O., Idrees K.B., Islamoglu T., Feng P., Yang H., Forgan R.S., Bara D., Furukawa S., Sanchez E., Gascon J., Telalović S., Ghosh S.K., Mukherjee S., Hill M.R., Sadiq M.M., Horcajada P., Salcedo-Abraira P., Kaneko K., Kukobat R., Kenvin J., Keskin S., Kitagawa S., Otake K.-I., Lively R.P., DeWitt S.J.A., Llewellyn P., Lotsch B.V., Emmerling S.T., Pütz A.M., Martí-Gastaldo C., Padial N.M., García-Martínez J., Linares N., Maspoch D., Suárez del Pino J.A., Moghadam P., Oktavian R., Morris R.E., Wheatley P.S., Navarro J., Petit C., Danaci D., Rosseinsky M.J., Katsoulidis A.P., Schröder M., Han X., Yang S., Serre C., Mouchaham G., Sholl D.S., Thyagarajan R., Siderius D., Snurr R.Q., Goncalves R.B., Telfer S., Advanced Materials; 34 (27, 2201502) 2022. 10.1002/adma.202201502.

    Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible. © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.


  • Ultralarge Free-Standing Imine-Based Covalent Organic Framework Membranes Fabricated via Compression

    Martín-Illán J.Á., Suárez J.A., Gómez-Herrero J., Ares P., Gallego-Fuente D., Cheng Y., Zhao D., Maspoch D., Zamora F. Advanced Science; 9 (7, 2104643) 2022. 10.1002/advs.202104643. IF: 16.806

    Demand continues for processing methods to shape covalent organic frameworks (COFs) into macroscopic objects that are needed for their practical applications. Herein, a simple compression method to prepare large-scale, free-standing homogeneous and porous imine-based COF-membranes with dimensions in the centimeter range and excellent mechanical properties is reported. This method entails the compression of imine-based COF-aerogels, which undergo a morphological change from an elastic to plastic material. The COF-membranes fabricated upon compression show good performances for the separation of gas mixtures of industrial interest, N2/CO2 and CH4/CO2. It is believed that the new procedure paves the way to a broader range of COF-membranes. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.