Staff directory Marc Botifoll Moral

Marc Botifoll Moral

Doctoral Student
FI 2020
Advanced Electron Nanoscopy



  • Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth

    Aseev P., Wang G., Binci L., Singh A., Martí-Sánchez S., Botifoll M., Stek L.J., Bordin A., Watson J.D., Boekhout F., Abel D., Gamble J., Van Hoogdalem K., Arbiol J., Kouwenhoven L.P., De Lange G., Caroff P. Nano Letters; 19 (12): 9102 - 9111. 2019. 10.1021/acs.nanolett.9b04265. IF: 12.279

    Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10※000-25※000 cm2 V-1 s-1 consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings. © 2019 American Chemical Society.