Staff directory David Pesquera Herrero

David Pesquera Herrero

Postdoctoral Researcher
Oxide Nanophysics



  • Beyond Expectation: Advanced Materials Design, Synthesis, and Processing to Enable Novel Ferroelectric Properties and Applications

    Kim J., Lupi E., Pesquera D., Acharya M., Zhao W., Velarde G.A.P., Griffin S., Martin L.W. MRS Advances; 2020. 10.1557/adv.2020.344. IF: 0.000

    Ferroelectrics and related materials (e.g., non-traditional ferroelectrics such as relaxors) have long been used in a range of applications, but with the advent of new ways of modeling, synthesizing, and characterizing these materials, continued access to astonishing breakthroughs in our fundamental understanding come each year. While we still rely on these materials in a range of applications, we continue to re-write what is possible to be done with them. In turn, assumptions that have underpinned the use and design of certain materials are progressively being revisited. This perspective aims to provide an overview of the field of ferroelectric/relaxor/polar-oxide thin films in recent years, with an emphasis on emergent structure and function enabled by advanced synthesis, processing, and computational modeling. Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press.

  • Beyond Substrates: Strain Engineering of Ferroelectric Membranes

    Pesquera D., Parsonnet E., Qualls A., Xu R., Gubser A.J., Kim J., Jiang Y., Velarde G., Huang Y.-L., Hwang H.Y., Ramesh R., Martin L.W. Advanced Materials; 32 (43, 2003780) 2020. 10.1002/adma.202003780. IF: 27.398

    Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high-quality substrates. Here, using the ferroelectric BaTiO3, production of precisely strain-engineered, substrate-released nanoscale membranes is demonstrated via an epitaxial lift-off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide-metal/ferroelectric/oxide-metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm−1 and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100-nm-thick film). In devices integrated on flexible polymers, enhanced room-temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS-compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth. © 2020 Wiley-VCH GmbH