Staff directory Gabor Csire

Gabor Csire

Postdoctoral Researcher
COFUND PROBIST
gabor.csire(ELIMINAR)@icn2.cat
Theory and Simulation

Publications

2020

  • Gap anisotropy in multiband superconductors based on multiple scattering theory

    Saunderson T.G., Annett J.F., Újfalussy B., Csire G., Gradhand M. Physical Review B; 101 (6, 064510) 2020. 10.1103/PhysRevB.101.064510. IF: 3.575

    We implement the Bogoliubov-de Gennes equation in a screened Korringa-Kohn-Rostoker method for solving, self-consistently, the superconducting state for three-dimensional crystals. This method combines the full complexity of the underlying electronic structure and Fermi surface geometry with a simple phenomenological parametrization for the superconductivity. We apply this theoretical framework to the known s-wave superconductors Nb, Pb, and MgB2. In these materials multiple distinct peaks at the gap in the density of states were observed, showing significant gap anisotropy which is in good agreement with experiment. Qualitatively, the results can be explained in terms of the k-dependent Fermi velocities on the Fermi surface sheets exploiting concepts from BCS theory. © 2020 American Physical Society.


  • Proximity effect in a superconductor-topological insulator heterostructure based on first principles

    Park K., Csire G., Ujfalussy B. Physical Review B; 102 (13, 134504) 2020. 10.1103/PhysRevB.102.134504. IF: 3.575

    Superconductor-topological insulator (SC-TI) heterostructures were proposed to be a possible platform to realize and control Majorana zero modes. Despite experimental signatures indicating their existence, univocal interpretation of the observed features demands theories including realistic electronic structures. To achieve this, we solve the Kohn-Sham-Dirac-Bogoliubov-de Gennes equations for ultrathin Bi2Se3 films on superconductor palladium telluride within the fully relativistic Korringa-Kohn-Rostoker method and investigate quasiparticle spectra as a function of chemical potential and film thickness. We find multiple proximity-induced gaps where the gap sizes highly depend on characteristics of the TI states. The TI Dirac interface state is relevant to the induced gap only when the chemical potential is close to the Dirac-point energy. Otherwise, at a given chemical potential, the largest induced gap arises from the highest-energy quantum-well states, whereas the smallest gap arises from the TI topological surface state with its gap size depending on the TI pairing potential. © 2020 American Physical Society.


  • Quantitative theory of triplet pairing in the unconventional superconductor LaNiGa2

    Ghosh S.K., Csire G., Whittlesea P., Annett J.F., Gradhand M., Újfalussy B., Quintanilla J. Physical Review B; 101 (10, 100506) 2020. 10.1103/PhysRevB.101.100506. IF: 3.575

    The exceptionally low-symmetry crystal structures of the time-reversal symmetry-breaking superconductors LaNiC2 and LaNiGa2 lead to an internally antisymmetric nonunitary triplet state as the only possibility compatible with experiments. We argue that this state has a distinct signature: A double-peak structure in the density of states (DOS) which resolves in the spin channel in a particular way. We construct a detailed model of LaNiGa2 capturing its electronic band structure and magnetic properties ab initio. The pairing mechanism is described via a single adjustable parameter. The latter is fixed by the critical temperature Tc allowing parameter-free predictions. We compute the electronic specific heat and find excellent agreement with experiment. The size of the ordered moment in the superconducting state is compatible with zero-field muon spin relaxation experiments and the predicted spin-resolved DOS suggests the spin splitting is within the reach of present experimental technology. © 2020 American Physical Society.


  • Real-space multiple scattering theory for superconductors with impurities

    Saunderson T.G., Gyorgypál Z., Annett J.F., Csire G., Újfalussy B., Gradhand M. Physical Review B; 102 (24, 245106) 2020. 10.1103/PhysRevB.102.245106. IF: 3.575

    We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3D crystals including substitutional impurities with a full normal-state DFT band structure. We apply the theoretical framework to bulk Nb with impurities. Without impurities, Nb has an anisotropic gap structure with two distinct peaks around the Fermi level. In the presence of nonmagnetic impurities, those peaks are broadened due to the scattering between the two bulk superconducting gaps, however the peaks remain separated. As a second example of self-consistent real-space solutions of the BdG equations, we examine superconducting clusters embedded within a nonsuperconducting bulk metallic host. This allows us to estimate the coherence length of the superconductor and we show that, within our framework, the coherence length of the superconductor is related to the inverse of the gap size, just as in bulk BCS theory. © 2020 American Physical Society.