Staff directory Lei Zhao

Lei Zhao

Fellowship Doctoral Student
China Scholarship Council
Universitat Autònoma de Barcelona (UAB)
Nanobioelectronics and Biosensors



  • Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing

    Kudr J., Zhao L., Nguyen E.P., Arola H., Nevanen T.K., Adam V., Zitka O., Merkoçi A. Biosensors and Bioelectronics; 156 (112109) 2020. 10.1016/j.bios.2020.112109. IF: 10.257

    The design and application of an inkjet-printed electrochemically reduced graphene oxide microelectrode for HT-2 mycotoxin immunoenzymatic biosensing is reported. A water-based graphene oxide ink was first formulated and single-drop line working microelectrodes were inkjet-printed onto poly(ethylene 2,6-naphthalate) substrates, with dimensions of 78 μm in width and 30 nm in height after solvent evaporation. The printed graphene oxide microelectrodes were electrochemically reduced and characterized by Raman and X-ray photoelectron spectroscopies in addition to microscopies. Through optimization of the electrochemical reduction parameters, differential pulse voltammetry were performed to examine the sensing of 1-naphthol (1-N), where it was revealed that reduction times had significant effects on electrode performance. The developed microelectrodes were then used as an immunoenzymatic biosensor for the detection of HT-2 mycotoxin based on carbodiimide linking of the microelectrode surface and HT-2 toxin antigen binding fragment of antibody (anti-HT2 (10) Fab). The HT-2 toxin and anti-HT2 (10) Fab reaction was reported by anti-HT2 immune complex single-chain variable fragment of antibody fused with alkaline phosphatase (anti-IC-HT2 scFv-ALP) which is able to produce an electroactive reporter – 1-N. The biosensor showed detection limit of 1.6 ng ∙ mL−1 and a linear dynamic range of 6.3 – 100.0 ng ∙ mL−1 within a 5 min incubation with 1-naphthyl phosphate (1-NP) substrate. © 2020 Elsevier B.V.


  • Flexoelectricity in antiferroelectrics

    Vales-Castro P., Roleder K., Zhao L., Li J.-F., Kajewski D., Catalan G. Applied Physics Letters; 113 (13, 132903) 2018. 10.1063/1.5044724. IF: 3.495

    Flexoelectricity (coupling between polarization and strain gradients) is a property of all dielectric materials that has been theoretically known for decades, but only relatively recently it has begun to attract experimental attention. As a consequence, there are still entire families of materials whose flexoelectric performance is unknown. Such is the case of antiferroelectrics: materials with an antiparallel but switchable arrangement of dipoles. These materials are expected to be flexoelectrically relevant because it has been hypothesised that flexoelectricity could be linked to the origin of their antiferroelectricity. In this work, we have measured the flexoelectricity of two different antiferroelectrics (PbZrO3 and AgNbO3) as a function of temperature, up to and beyond their Curie temperature. Although their flexocoupling shows a sharp peak at the antiferroelectric phase transition, neither flexoelectricity nor the flexocoupling coefficients are anomalously high, suggesting that it is unlikely that flexoelectricity causes antiferroelectricity. © 2018 Author(s).